5 research outputs found

    Accurate Corner Detection Methods using Two Step Approach

    Get PDF
    Many image features are proved to be good candidates for recognition. Among them are edges, lines, corners, junctions or interest points in general. Importance of corner detection in digital images is increasing with increasing work in computer vision in imagery. One of the most promising techniques is the one based on Harris corner detection method. This work describes different approaches to detect corner in efficient way. Based on the works carried out by Harris method, the authors have worked upon increasing efficiency using edge detection methods on image, along with applying the Harris on this pre-processed image. Most of the time, such a step is performed as one of the first steps upon which more complicated algorithm rely. Hence, good outcome of such an operation influences the whole vision channel. This paper contains a quantitative comparison of three such modified techniques using Sobel2013;Harris, Canny-Harris and Laplace-Harris with Harris operator on the basis of distances computed by these methods from user detected corners

    Un détecteur de points caractéristiques sur des images multispectrales. Extension vers un détecteur sub-pixellique

    Get PDF
    · Nous proposons dans cet article un détecteur de coins pour des images multispectrales. L'information multispectrale est réellement prise en compte puisque nous considérons ces images comme des champs de vecteurs, ce qui nous permet d'utiliser la géométrie différentielle. De bons résultats sont obtenus comme le montre une étude comparative entre ce détecteur et celui de Harris [HAR88]. Cependant, des délocalisations de coins apparaissent pour des images fortement lissées (ce qui est vrai pour une grande partie des détecteurs). C'est pourquoi nous avons implémenté une détection sub-pixellique à même de retrouver la position exacte du coin

    Faster and better: a machine learning approach to corner detection

    Full text link
    The repeatability and efficiency of a corner detector determines how likely it is to be useful in a real-world application. The repeatability is importand because the same scene viewed from different positions should yield features which correspond to the same real-world 3D locations [Schmid et al 2000]. The efficiency is important because this determines whether the detector combined with further processing can operate at frame rate. Three advances are described in this paper. First, we present a new heuristic for feature detection, and using machine learning we derive a feature detector from this which can fully process live PAL video using less than 5% of the available processing time. By comparison, most other detectors cannot even operate at frame rate (Harris detector 115%, SIFT 195%). Second, we generalize the detector, allowing it to be optimized for repeatability, with little loss of efficiency. Third, we carry out a rigorous comparison of corner detectors based on the above repeatability criterion applied to 3D scenes. We show that despite being principally constructed for speed, on these stringent tests, our heuristic detector significantly outperforms existing feature detectors. Finally, the comparison demonstrates that using machine learning produces significant improvements in repeatability, yielding a detector that is both very fast and very high quality.Comment: 35 pages, 11 figure

    Image Processing and Pattern Recognition Applied to Soil Structure

    Get PDF
    This thesis represents a collaborative research between the Department of Electronics & Electrical Engineering and the Department of Civil Engineering, University of Glasgow. The project was initially aimed at development of some theories and techniques of image processing and pattern recognition for the study of soil microstructures. More specifically, the aim was to study the shapes, orientations, and arrangements of soil particles and voids (i.e. pores): these three are very important properties, which are used both for description, recognition and classification of soils, and also for studying the relationships between the soil structures and physical, chemical, geological, geographical, and environmental changes. The work presented here was based principally on a need for analysing the structure of soil as recorded in two-dimensional images which might be conventional photographs, optical micrographs, or electron-micrographs. In this thesis, first a brief review of image processing and pattern recognition and their previous application in the study of soil microstructures is given. Then a convex hull based shape description and classification for soil particles is presented. A new algorithm, SPCH, is proposed for finding the convex hull of either a binary object or a cluster of points in a plane. This algorithm is efficient and reliable. Features of pattern vectors for shape description and classification are obtained from the convex hull and the object. These features are invariant with respect to coordinate rotation, translation, and scaling. The objects can then be classified by any standard feature-space method: here minimum-distance classification was used. Next the orientation analysis of soil particles is described. A new method, Directed Vein, is proposed for the analysis. Another three methods: Convex Hull, Principal Components, and Moments, are also presented. Comparison of the four methods shows that the Directed Vein method appears the fastest; but it also has the special property of estimating an 'internal preferred orientation' whereas the other methods estimate an 'elongation direction'. Fourth, the roundness/sharpness analysis of soil particles is presented. Three new algorithms, referred to as the Centre, Gradient Centre, and Radius methods, all based on the Circular Hough Transform, are proposed. Two traditional Circular Hough Transform algorithms are presented as well. The three new methods were successfully applied to the measurement of the roundness (sharpness of comers) of two-dimensional particles. The five methods were compared from the points of view of memory requirement, speed, and accuracy; and the Radius method appears to be the best for the special topic of sharpness/roundness analysis. Finally the analysis and classification of aggregates of objects is introduced. A new method. Extended Linear Hough Transform, is proposed. In this method, the orientations and locations of the objects are mapped into extended Hough space. The arrangements of the objects within an aggregate are then determined by analysing the data distributions in this space. The aggregates can then be classified using a tree classifier. Taken together, the methods developed or tested here provide a useful toolkit for analysing the shapes, orientation, and aggregation of particles such as those seen in two-dimensional images of soil structure at various scales
    corecore