1,557 research outputs found

    Fast Ewald summation for free-space Stokes potentials

    Full text link
    We present a spectrally accurate method for the rapid evaluation of free-space Stokes potentials, i.e. sums involving a large number of free space Green's functions. We consider sums involving stokeslets, stresslets and rotlets that appear in boundary integral methods and potential methods for solving Stokes equations. The method combines the framework of the Spectral Ewald method for periodic problems, with a very recent approach to solving the free-space harmonic and biharmonic equations using fast Fourier transforms (FFTs) on a uniform grid. Convolution with a truncated Gaussian function is used to place point sources on a grid. With precomputation of a scalar grid quantity that does not depend on these sources, the amount of oversampling of the grids with Gaussians can be kept at a factor of two, the minimum for aperiodic convolutions by FFTs. The resulting algorithm has a computational complexity of O(N log N) for problems with N sources and targets. Comparison is made with a fast multipole method (FMM) to show that the performance of the new method is competitive.Comment: 35 pages, 15 figure

    Fast integral methods for conformal antenna and array modeling in conjunction with hybrid finite element formulations

    Get PDF
    Fast integral methods are used to improve the efficiency of hybrid finite element formulations for conformal antenna and array modeling. We consider here cavity-backed configurations recessed in planar and curved ground planes as well as infinite periodic structures with boundary integral (BI) terminations on the top and bottom bounding surfaces. Volume tessellation is based on triangular prismatic elements which are well suited for layered structures and still give the required modeling flexibility for irregular antenna and array elements. For planar BI terminations of finite and infinite arrays the adaptive integral method is used to achieve O(NlogN) computational complexity in evaluating the matrix-vector products within the iterative solver. In the case of curved mesh truncations for finite arrays the fast multipole method is applied to obtain O(N1.5) complexity for the evaluation of the matrix-vector products. Advantages and disadvantages of these methods as they relate to different applications are discussed, and numerical results are provided

    On iterative solutions for quantum-mechanical bound states

    Get PDF
    Iterative solutions for quantum mechanical bound state

    Preconditioning the Advection-Diffusion Equation: the Green's Function Approach

    Get PDF
    We look at the relationship between efficient preconditioners (i.e., good approximations to the discrete inverse operator) and the generalized inverse for the (continuous) advection-diffusion operator -- the Green's function. We find that the continuous Green's function exhibits two important properties -- directionality and rapid downwind decay -- which are preserved by the discrete (grid) Green's functions, if and only if the discretization used produces non-oscillatory solutions. In particular, the downwind decay ensures the locality of the grid Green's functions. Hence, a finite element formulation which produces a good solution will typically use a coefficient matrix with almost lower triangular structure under a "with-the-flow" numbering of the variables. It follows that the block Gauss-Seidel matrix is a first candidate for a preconditioner to use with an iterative solver of Krylov subspace type

    A Fast Numerical Solution of Scattering by a Cylinder: Spectral Method for the Boundary Integral Equations

    Get PDF
    It is known that the exact analytic solutions of wave scattering by a circular cylinder, when they exist, are not in a closed form but in infinite series which converge slowly for high frequency waves. In this paper, a fast numerical solution is presented for the scattering problem in which the boundary integral equations, reformulated from the Helmholtz equation, are solved using a Fourier spectral method. It is shown that the special geometry considered here allows the implementation of the spectral method to be simple and very efficient. The present method differs from previous approaches in that the singularities of the integral kernels are removed and dealt with accurately. The proposed method preserves the spectral accuracy and is shown to have an exponential rate of convergence. Aspects of efficient implementation using FFT are discussed. Moreover, the boundary integral equations of combined single- and double-layer representation are used in the present paper. This ensures the uniqueness of the numerical solution for the scattering problem at all frequencies. Although a strongly singular kernel is encountered for the Neumann boundary conditions, it is shown that the hypersingularity can be handled easily in the spectral method. Numerical examples that demonstrate the validity of the method are also presented. © 1994, Acoustical Society of America
    corecore