1,286 research outputs found

    SoccerNet: A Scalable Dataset for Action Spotting in Soccer Videos

    Full text link
    In this paper, we introduce SoccerNet, a benchmark for action spotting in soccer videos. The dataset is composed of 500 complete soccer games from six main European leagues, covering three seasons from 2014 to 2017 and a total duration of 764 hours. A total of 6,637 temporal annotations are automatically parsed from online match reports at a one minute resolution for three main classes of events (Goal, Yellow/Red Card, and Substitution). As such, the dataset is easily scalable. These annotations are manually refined to a one second resolution by anchoring them at a single timestamp following well-defined soccer rules. With an average of one event every 6.9 minutes, this dataset focuses on the problem of localizing very sparse events within long videos. We define the task of spotting as finding the anchors of soccer events in a video. Making use of recent developments in the realm of generic action recognition and detection in video, we provide strong baselines for detecting soccer events. We show that our best model for classifying temporal segments of length one minute reaches a mean Average Precision (mAP) of 67.8%. For the spotting task, our baseline reaches an Average-mAP of 49.7% for tolerances δ\delta ranging from 5 to 60 seconds. Our dataset and models are available at https://silviogiancola.github.io/SoccerNet.Comment: CVPR Workshop on Computer Vision in Sports 201

    Evolution of A Common Vector Space Approach to Multi-Modal Problems

    Get PDF
    A set of methods to address computer vision problems has been developed. Video un- derstanding is an activate area of research in recent years. If one can accurately identify salient objects in a video sequence, these components can be used in information retrieval and scene analysis. This research started with the development of a course-to-fine frame- work to extract salient objects in video sequences. Previous work on image and video frame background modeling involved methods that ranged from simple and efficient to accurate but computationally complex. It will be shown in this research that the novel approach to implement object extraction is efficient and effective that outperforms the existing state-of-the-art methods. However, the drawback to this method is the inability to deal with non-rigid motion. With the rapid development of artificial neural networks, deep learning approaches are explored as a solution to computer vision problems in general. Focusing on image and text, the image (or video frame) understanding can be achieved using CVS. With this concept, modality generation and other relevant applications such as automatic im- age description, text paraphrasing, can be explored. Specifically, video sequences can be modeled by Recurrent Neural Networks (RNN), the greater depth of the RNN leads to smaller error, but that makes the gradient in the network unstable during training.To overcome this problem, a Batch-Normalized Recurrent Highway Network (BNRHN) was developed and tested on the image captioning (image-to-text) task. In BNRHN, the highway layers are incorporated with batch normalization which diminish the gradient vanishing and exploding problem. In addition, a sentence to vector encoding framework that is suitable for advanced natural language processing is developed. This semantic text embedding makes use of the encoder-decoder model which is trained on sentence paraphrase pairs (text-to-text). With this scheme, the latent representation of the text is shown to encode sentences with common semantic information with similar vector rep- resentations. In addition to image-to-text and text-to-text, an image generation model is developed to generate image from text (text-to-image) or another image (image-to- image) based on the semantics of the content. The developed model, which refers to the Multi-Modal Vector Representation (MMVR), builds and encodes different modalities into a common vector space that achieve the goal of keeping semantics and conversion between text and image bidirectional. The concept of CVS is introduced in this research to deal with multi-modal conversion problems. In theory, this method works not only on text and image, but also can be generalized to other modalities, such as video and audio. The characteristics and performance are supported by both theoretical analysis and experimental results. Interestingly, the MMVR model is one of the many possible ways to build CVS. In the final stages of this research, a simple and straightforward framework to build CVS, which is considered as an alternative to the MMVR model, is presented

    Temporal Sentence Grounding in Videos: A Survey and Future Directions

    Full text link
    Temporal sentence grounding in videos (TSGV), \aka natural language video localization (NLVL) or video moment retrieval (VMR), aims to retrieve a temporal moment that semantically corresponds to a language query from an untrimmed video. Connecting computer vision and natural language, TSGV has drawn significant attention from researchers in both communities. This survey attempts to provide a summary of fundamental concepts in TSGV and current research status, as well as future research directions. As the background, we present a common structure of functional components in TSGV, in a tutorial style: from feature extraction from raw video and language query, to answer prediction of the target moment. Then we review the techniques for multimodal understanding and interaction, which is the key focus of TSGV for effective alignment between the two modalities. We construct a taxonomy of TSGV techniques and elaborate the methods in different categories with their strengths and weaknesses. Lastly, we discuss issues with the current TSGV research and share our insights about promising research directions.Comment: 29 pages, 32 figures, 9 table

    Exploratory search through large video corpora

    Get PDF
    Activity retrieval is a growing field in electrical engineering that specializes in the search and retrieval of relevant activities and events in video corpora. With the affordability and popularity of cameras for government, personal and retail use, the quantity of available video data is rapidly outscaling our ability to reason over it. Towards the end of empowering users to navigate and interact with the contents of these video corpora, we propose a framework for exploratory search that emphasizes activity structure and search space reduction over complex feature representations. Exploratory search is a user driven process wherein a person provides a system with a query describing the activity, event, or object he is interested in finding. Typically, this description takes the implicit form of one or more exemplar videos, but it can also involve an explicit description. The system returns candidate matches, followed by query refinement and iteration. System performance is judged by the run-time of the system and the precision/recall curve of of the query matches returned. Scaling is one of the primary challenges in video search. From vast web-video archives like youtube (1 billion videos and counting) to the 30 million active surveillance cameras shooting an estimated 4 billion hours of footage every week in the United States, trying to find a set of matches can be like looking for a needle in a haystack. Our goal is to create an efficient archival representation of video corpora that can be calculated in real-time as video streams in, and then enables a user to quickly get a set of results that match. First, we design a system for rapidly identifying simple queries in large-scale video corpora. Instead of focusing on feature design, our system focuses on the spatiotemporal relationships between those features as a means of disambiguating an activity of interest from background. We define a semantic feature vocabulary of concepts that are both readily extracted from video and easily understood by an operator. As data streams in, features are hashed to an inverted index and retrieved in constant time after the system is presented with a user's query. We take a zero-shot approach to exploratory search: the user manually assembles vocabulary elements like color, speed, size and type into a graph. Given that information, we perform an initial downsampling of the archived data, and design a novel dynamic programming approach based on genome-sequencing to search for similar patterns. Experimental results indicate that this approach outperforms other methods for detecting activities in surveillance video datasets. Second, we address the problem of representing complex activities that take place over long spans of space and time. Subgraph and graph matching methods have seen limited use in exploratory search because both problems are provably NP-hard. In this work, we render these problems computationally tractable by identifying the maximally discriminative spanning tree (MDST), and using dynamic programming to optimally reduce the archive data based on a custom algorithm for tree-matching in attributed relational graphs. We demonstrate the efficacy of this approach on popular surveillance video datasets in several modalities. Finally, we design an approach for successive search space reduction in subgraph matching problems. Given a query graph and archival data, our algorithm iteratively selects spanning trees from the query graph that optimize the expected search space reduction at each step until the archive converges. We use this approach to efficiently reason over video surveillance datasets, simulated data, as well as large graphs of protein data

    Video Analysis and Indexing

    Get PDF

    Actor and Action Video Segmentation from a Sentence

    Get PDF
    This paper strives for pixel-level segmentation of actors and their actions in video content. Different from existing works, which all learn to segment from a fixed vocabulary of actor and action pairs, we infer the segmentation from a natural language input sentence. This allows to distinguish between fine-grained actors in the same super-category, identify actor and action instances, and segment pairs that are outside of the actor and action vocabulary. We propose a fully-convolutional model for pixel-level actor and action segmentation using an encoder-decoder architecture optimized for video. To show the potential of actor and action video segmentation from a sentence, we extend two popular actor and action datasets with more than 7,500 natural language descriptions. Experiments demonstrate the quality of the sentence-guided segmentations, the generalization ability of our model, and its advantage for traditional actor and action segmentation compared to the state-of-the-art.Comment: Accepted to CVPR 2018 as ora
    • …
    corecore