2 research outputs found

    An FPGA Kalman-MPPT implementation adapted in SST-based dual active bridge converters for DC microgrids systems

    Get PDF
    The design of digital hardware controllers for the integration of renewable energy sources in DC microgrids is a research topic of interest. In this paper, a Kalman filter-based maximum power point tracking algorithm is implemented in an FPGA and adapted in a dual active bridge (DAB) converter topology for DC microgrids. This approach uses the Hardware/Software (HW/SW) co-design paradigm in combination with a pipelined piecewise polynomial approximation design of the Kalman-maximum power point tracking (MPPT) algorithm instead of traditional lookup table (LUT)-based methods. Experimental results reveal a good integration of the Kalman-MPPT design with the DAB-based converter, particularly during irradiation and temperature variations due to changes in weather conditions, as well as a good balanced hardware design in complexity and area-time performance compared to other state-of-art FPGA designs
    corecore