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ABSTRACT The design of digital hardware controllers for the integration of renewable energy sources
in DC microgrids is a research topic of interest. In this paper, a Kalman filter-based maximum power
point tracking algorithm is implemented in an FPGA and adapted in a dual active bridge (DAB) converter
topology for DC microgrids. This approach uses the Hardware/Software (HW/SW) co-design paradigm in
combination with a pipelined piecewise polynomial approximation design of the Kalman-maximum power
point tracking (MPPT) algorithm instead of traditional lookup table (LUT)-based methods. Experimental
results reveal a good integration of the Kalman-MPPT design with the DAB-based converter, particularly
during irradiation and temperature variations due to changes in weather conditions, as well as a good-
balanced hardware design in complexity and area-time performance compared to other state-of-art FPGA

designs.

INDEX TERMS DC-DC power converters, Power generation, Field programmable gate arrays.

I. INTRODUCTION

C microgrid is an attractive technology for electrical

grid systems because of its natural interface with renew-
able energy sources, electric loads, energy storage systems
and galvanic isolation. It can supply more effectively and
efficiently the renewable energy sources to power electronic
loads by choosing a suitable voltage level and thereby avoid-
ing conversion stages [1].

Recent studies show an increase in research works on the
development of digital controllers for direct current (DC)
microgrids systems [2]-[10]. Implementations on different
technology fields, such as, vehicle to grid (V2G) [2], [8],
power management distribution from PVs [3], [4], hybrid
AC/DC microgrids [5]-[7], [10] have been proposed with
different converter configurations. Its power capacity is very
variable and uncertain when solar photovoltaic (PV) arrays
are integrated due to its dependency on weather conditions.
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To solve this problem, the digital implementation of maxi-
mum power point tracking (MPPT) algorithms is necessary
for extracting the maximum power from a PV array under
different conditions [11]-[14]. In this regard, the parallel pro-
gramming, fast processing capabilities, decreasing cots and
the HW/SW co-design features of the field programmable
gate array (FPGA) looks like an attractive option for the
digital control implementation [15]-[21]. For example, a
time-area performance analysis in FPGAS of an adaptive
perturb and observe (P&O) maximum power point tracking
controller for photovoltaic application is presented in [15].
Also, the FPGA-based stability analysis of the P&O method
is performed by [16] and under partial shading conditions in
[17]. Despite these HW design analysis, a drawback of P&O
is that, at steady state, the operating point oscillates around
the maximum power point with an unstable behavior.

In the design, it is desired a trade-off between the resource
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FIGURE 1. Conceptualization of the Kalman-MPPT and DAB controller for DC
microgrids.

implementation area, the tracking speed and the oscillations
that occur around the maximum power point (MPP). Alter-
native implementation approaches are fuzzy logic controller
(FLC) [21], [22], evolutionary algorithms (EAs) [23], bio-
inspired algorithms [24], modified sine-cosine [25], partial
swarm optimization (PSO) [26]-[28], intelligent fuzzy par-
ticle swarm optimization (ANFIS-PSO) [29], ANFIS with
artificial bee colony (ANFIS-ABC) [30], ANFIS-FLOWER
pollination optimization algorithm [31], Lyapunov function-
based controller [32], gravitational search algorithm with
particle swarm optimization (GAS-PSO) [33], PSO with
artificial bee colony (PSO-ABC) [34] and neural network
(NN) [12], to effectively deal with the non-linear charac-
teristics of I-V curves. However, they require complex and
extensive computations, which means a large area and com-
plex FPGA implementation [35]-[38]. In particular, FPGA
implementations of arithmetic operations require specific
methods, such as in [35] for a complex divider, a piecewise
polynomial approximation technique for a matrix inversion
architecture [36], an adaptive segmentation methodology for
evaluation functions [37] or an approximation technique as
presented in [38]. In this sense, the Kalman-MPPT design
with a parallel FPGA implementation represents a good fit to
estimate non-measurable signals with a fast convergence and
a well-balance in area-time performance. In comparison with
traditional implementations, such as the perturb & observe
(P&O) that is widely used in industry, Kalman filter has a
faster tracking response [48], [49]. The filtering capabilities
of the Kalman filter allow using more inexpensive sensors for
the implementation of DC microgrids [47]. Figure 1 shows
the conceptualization of the Kalman-MPPT adapted to the
DAB converter for DC microgrids.

In this paper, an FPGA-based Kalman-MPPT architecture
is implemented and adapted into a DAB-based converter
for DC microgrids applications. In the design, the pipelined
implementation with piecewise polynomial approximation
(PPA) is developed. This hardware digital core is then
connected as a coprocessor unit in the hardware/software
(HW/SW) codesign paradigm. The main contributions of this
work are:
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o A low-cost and well-balanced area-time design of a full-
custom Kalman-MPPT core with 55dB signal quantiza-
tion to noise ratio (SQNR) for 24-bit resolution in an
FPGA.

o Pipelined HW logic design implemented by using a
PPA-based technique instead of lookup table (LUT)-
based methods.

o A small-area Kalman-MPPT design that occupies less
hardware resources than designs with intellectual prop-
erty (IP) arithmetic blocks architectures.

o A system on a chip integration of the Kalman-MPPT
logic-core with the HW/SW co-design technique in a
flexible and rapid prototyping.

Although, there are studies of MPPT architectures and
complex algorithms for DC microgrids in current iterature,
many of these works avoid the implementation of arithmetic
operations, such as matrix inversion, square roots, number
divisions, among others, by using intellectual property (IP)
cores, or removing this important arithmetic blocks from
design; however, this restriction leads to losing algorithm
precision and problems for converging to the correct results
[19], [39], [45], [46], [50]. The use of Kalman-MPPT adapted
to a DAB-based converter represents a reliable option to
route renewable energy from homes and businesses with low-
cost sensors and galvanic isolation to accommodate different
voltage levels into the DC microgrid.

The rest of the paper is organized as follows: Section
2 reviews the background of Kalman-MPPT for SST-based
DC microgrids. Section 3 presents a parallel Kalman-MPPT
architecture and its integration in an HW/SW co-design.
Section 4 analyzes the implementation results, and then,
compares the hardware performance with the state-of-art
designs on FPGAs. Section 5 shows a discussion of the
performance analysis, and finally, Section 6 presents the
concluding remarks.

Il. KALMAN-MPPT IN DC MICROGRIDS

In this section, it is presented the analysis of the Kalman-
MPPT algorithm for DC microgrids. As shown in Figure
1, the Kalman-MPPT implementation is conceptualized as a
coprocessor unit following the HW/SW co-design technique.
In order to implement and adapt the Kalman-MPPT design,
the DAB mathematical model is described.

A. KALMAN-MPPT MODEL

The Kalman-MPPT is modelled to maximize the power ca-
pacity extracted from PV arrays. Considering that PV arrays
have variations in the measurements of irradiance and tem-
perature levels due to environmental fluctuations, the Kalman
filter can estimate the optimal voltage and power value to
avoid loses in the MPPT accuracy.

The following model is used:
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AP
= _— ]
Tr1 = Tk + M2 (1

Yk = Tk + Wk, 2

where zj; is the updated value by the MPPT, M is the step
size corrector, 2—5 the slope of the P-V curve, w measure-
ment noise. The general representation form in state space is

the following:

Tyl = Az + Buy, 3)
Yk = Crg + wg,
with A = 1, B = M, C = 1 the main Kalman model
parameters. Here, the Kalman filter approach is applied, and
consists in proposing an estimated model of the system, as
follows:
. . AP R
Tht1 :xk+MA—V+Kk(yk—C’:vk), 4)
where K, is the gain of the Kalman-MPPT that reduce the
error between the output y; and the estimated output of § =
CZg.
The gain is updated to predict the forward estimated state
and the covariance error. These estimates operate as a correc-
tion mechanism that reduces the error as follows:

K = 2,CT(CZ,CT + R)71, (5)

Zis1 = (I — K,C)Zy. (6)

With the correction mechanism, the reference voltage and
power for DAB-SST operation are generated, obtaining the
maximum value of the P-V curve.

B. DAB-SST MODEL

The DAB-SST model is analyzed in this subsection. Remark
that the DAB-SST topology provides galvanic isolation and
voltage adaption. It can operate at frequencies of kHz, and
thus, a considerable reduction in component size is achieved
[40], [41]. The schematic of a DAB-SST converter is pre-
sented in Figure 2.

M
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FIGURE 2. Conceptualization of the Kalman-MPPT and DAB-SST controller
for DC microgrid.

As illustrated in Figure 2, the DAB-SST converter is com-
posed of a high-frequency transformer with a Np/N's ratio
of 1 : 1, two H-bridges of high-voltage power MOSFETs Q1,
1 = 1,2, ..., the leakage inductance of the transforme rL1
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and Resistance R1, DC output capacitor C'o and the output
resistor R.

Table 1 presents the parameters used in the DAB-SST
converter.

Now, let us consider the matrix representation of the DAB-
SST state-space model as follows:

i = Az + Bu, (7)
where,
1 __4sin(dm)  4cos(dn)
25ir}1{(§$r) Tchlo ~Co
Tl Bt 0@
L1 —Ws —TI1
0 4
B = 0 0 ; 9
w7 0
z=[ovg REAL(I;) IMAG(I;)]', and (10)
w=[wv inv] . (11)

The state equation of (7) represents the dynamic behaviour
of the DAB-DC-DC converter. Each H-bridge of the DAB
simultaneously turn-on and turn-off the diagonal switches.
However, these activations can cause DC offsets in both
inductor current and transformer magnetic flux density in
transient states. Therefore, a controller unit is necessary for
phase shift modulation to control each H-bridge [1].

C. DAB-SST CONTROL

In order to control the power capacity of the DC microgrid,
the flow of energy between the PV source and the DAB-
SST must be controlled. A controller is proposed to stabilize
the system and to achieve a good steady-state and dynamic
response.

A testbench was employed with Xilinx Project Naviga-
tor and MATLAB/Simulink environment. The PWM signals
(feedback controller) are generated to gate drivers and turn
on/off the MOSFETS, using the reference signals addressed
by the Kalman filter, as well as, DAB-SST output voltage and
current measurements.

In this regard, the system introduced in (7) is rewritten as:

iy = f1(w) + byuy,
&y = fo(x), (12)
i3 = f3(x) + baua,

TABLE 1. DAB-SST parameters used in the experiment.

R=1/20 | Co =0.0002
R1=130 | L1=0.0005
k=1 k1 = 100
ko =1 Ky = 10
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where
1 4 sin(dn) 4 cos(dm)

fl (.CE) - _RCO e 7TC() 2 7TC() 3
2sin(dm) R1

Ja(z) = 1 %1 g%t wsts,
f3(z) = %Zsiéfﬁ)m — WsT2 — %xg,
1
by = —637
b = T

The controller for the DAB-SST system is now represented
as:
ug =iy = Colf1(x) + kprey + ko2

’/TLt
2

(en)dt],  (13)

w = v = T3t fala) + ner s [ (e d), (1)
with (k; ;), the adjustment parameters, e; the error, between
the reference and the state variable, (¢ = v, I) and (j = 1, 2),
respectively.

lll. KALMAN-MPPT ARCHITECTURE

HW/SW co-design is conducted for complex algorithm im-
plementations in a system on a chip (SoCs), which integrates
the synergy of hardware and software intending to optimize
design constraints such as performance and power of the im-
plementation [42], [43]. The Xilinx Zynq Processing System
consists of a SoC style integrated processing system (PS) and
a programmable logic (PL) unit, providing an extensible and
flexible SoC solution on a single chip [42].

In this study, the Kalman-MPPT is implemented with
hardware PL unit and the dual-core ARM PS is used for the
DAB-converter control as illustrated in Figure 3. The PL core
is connected to the CPU dual-core ARM through the AXI
bus.

MPPT step size
corrector

Zying processing system

Common
peripherals

Dual core
ARM
Zing processor

Memory
controller

AXI
interconnect

Kalman estimate
model

Xk(0)

A A
Ky

MPPT forward
estimate stae
Zio) Zin

Viaax

Optimal index
indentification

Prax

FIGURE 3. HW/SW co-design approach.

The strategy of the HW Kalman-MPPT unit consists of a
well-balanced design in time and area. Piecewise polynomial
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approximation (PPA) technique is used for the complex oper-
ations of the Kalman-MPPT algorithm according to the block
diagram of Figure 4.

The first stage of the design flow is the MPPT model.
The dynamic variations of the PV array generate the output
voltage and power for the corresponding level of temperature
and irradiance. Remark that these variations are due to en-
vironmental fluctuations, which affect the behaviour of the
SST-DAB converter. The slope of the PV curve is calculated
with the reciprocal operation 2—5 and a step size corrector M
that is applied as one degree of freedom of the design. The
updated MPPT value x4 is generated according to (1).

In the Kalman forward estimate operation, the functions
K, = ZkCT(CZkCT + R)71 and Zy41 = (1 — KkC)Zk
of (5) and (6) are implemented. These modules work together
as a correction mechanism of the Kalman-MPPT algorithm.
Finally, the integration of MPPT model with a Kalman For-
ward Estimate stage provide the reference voltage for the
DAB converter.

The hardware architecture is employed considering the
precision of 24 bits fixed-point operations, 4-bits integer
and 20-bits decimal (i.e., for signed numbers in a two-
complement format) and the clock frequency of 100 MHz.

A. MPPT STEP SIZE CORRECTOR

Figure 5 illustrates the parallel design of the MPPT step size
corrector module. Two independent memory buffers receive
and subtract the input data of the power and voltage from
the PV panel. The reciprocal operation (divisor module)
is implemented via the PPA technique as previously im-
plemented in [36]. This FPGA implementation is different
than other designs in the open literature; which avoid the
implementation of computer arithmetic blocks.

For the divisor module design, the following methodol-
ogy is applied: a) a non-uniform segmentation is defined
to achieve the PPA technique. The segmentation is applied
dividing the function domain in m + 1 segments located
in power of two; i.e., 0,1/2(™) ... '1/231/22,1/2,1 [36],
[37]. After that, a widely known range reduction strategy is
applied, i.e., for a given function f(x), with a < z < b,
it is transformed into a new function H(z) = W (f(z)) for
0 < z < 1; b) after defining the limits of segments of the
PPA technique, this is necessary to evaluate the architecture
performance via a bit-width optimization in order to identify
the required number of bits of each fixed-point operand in the
data-path. The last step will guarantee the desired SQNR.

Therefore, after fixed-point and SQNR analysis, the di-
visor module architecture was configured with the follow-
ing configuration parameters: a 24-bit data-path, 2-degree
polynomials, and m + 1 = 23 + 1 = 9 non-uniform
segments, which results in an SQNR equal to 55.6 dB for the
divisor module. It is possible to improve the reached SQNR,
however, this implies to consider the following: a) a higher
number of segments in order to obtain a better representation
of the approximated division function; b) an increment in
the word length. Both cases convey to an increment in the
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FIGURE 5. MPPT step size corrector module architecture.

used area resources in the designed architecture; i.e., memory
ROMs for allocating the polynomial coefficients, and an
increase in the design data-path.

Figure 6 illustrates the general architecture of the divisor
module to compute ﬁ; after that, it is multiplied by M and
AP for obtaining M %.

The PPA-based reciprocal architecture is addressed with a
serial of multiply-accumulate operations. The resulting im-
plementation is composed of a buffer memory block, which
stores the coefficients of the 9 segments of the division curve
labelled as ROM AO, Al and A2; a decoder, or coefficient
detector, used to identify the interval where the input value
belongs; and the fixed-point arithmetic operations of the 2-

ROM memory

Address

/,—)
JIEN

Ay AL A
Polynomial evaluator

y=f(x)

Decoder

==

FIGURE 6. General architecture that uses a PPA technique with hierarchical
segmentation method.
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FIGURE 7. Polynomial evaluator architecture.

Axx + Ay
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FIGURE 8. Multiplier and adder (MAC) architecture.

degree, which evaluates the input value (considering a range
reduction of [0, 1)) with the polynomial coefficients. Figure
7 shows the 2-degree polynomial evaluator architecture and
the multiply-accumulate (MAC) architecture is presented in
Figure 8. The general architecture computes the division op-
eration in only one cycle after an initial latency. Notice that,
this is a full-custom architecture based on FPGA in contrast
to CORDIC, IP cores, or DSP sequential implementations.

B. MPPT FORWARD ESTIMATE STATE

This stage implements an estimator that acts as a correction
mechanism. The first step implements the inverse function
® = (CZ,CT+R)~!, and then, the matrix-vector operations
are carried out updating the value of Zj,i. Due to the
variables, C' and R are scalar values, the inverse function is
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approximated with PPA-cells as another reciprocal function

~ 0Z:CT+ R
This hardware architecture of the MPPT forward estimate

state is shown in Figure 9 and it is implemented considering
the parameters: word-length precision of 24 bits fixed-point
operations for signed numbers in two-complement format, 9
segments and 2-degree polynomials.

The Kalman estimate model consists in the adaptation of
the MPPT and Kalman algorithms. The PPA-cells of the
reciprocal functions and the arithmetic operations of the
MPPT model are integrated into this architecture. This design
improves the FPGA area resources results of previous studies
reported in [19], [20], [21], [50] incorporating in the design
PPA-cells and guarantying an accurate fixed-point evaluation
by measuring the SQNR.

Figure 10 shows the hardware implementation of the
Kalman estimate modules with fixed-point operations of 24
bits and signed numbers in two-complement format. Finally,
the index detector module generates the reference voltage and
power values for the DAB converter controller.

IV. IMPLEMENTATION RESULTS

In this section, the results of the system and hardware level
implementation of the Kalman-MPPT adapted in an SST-
based DAB Converter are reported. In order to demonstrate
the performance of the system, four test-case scenarios are
conducted to analyze the Kalman-MPPT accuracy for DC
microgrid applications. The area-time analysis of the HW
core is also analyzed with the Xilinx Zybo Z7-10, which
tightly integrates a dual-core ARM cortex-A9 processor with
Xilinx-7 XC7Z010-1CLG400C FPGA Logic.

The test-case scenarios are designed to analyze the re-
sponse of the Kalman-MPPT implementation with uncertain
perturbations considered under controlled lab conditions and
the integration for DC microgrids applications. In this sense,
different irradiance and temperature levels were introduced
in the implemented system via the use of an emulated PV
array based on the two-diode model [44].

The test-case scenarios are implemented with the ARM
Cortex-A9 processor and the Kalman-MPPT logic core in
a HW/SW codesign. The Vivado Integrated Development
Environment (IDE) and the Xilinx Zybo Z7-10 platform
enable the validation of the co-design with experimental data
used in the test-cases.

Figure 12 illustrates the test-case validation using the
HW/SW codesign approach using off-line experimental data
with the Vivado IDE environment, the hardware in the loop

[} 1

Zaoy—>| " z, 1
q T >Zy
czC +R K, 1-K,
Divisior module T T Clk

FIGURE 9. MPPT forward estimate state.
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FIGURE 11. Optimal index identification.

tool and the Xilinx Zybo Z7-10 platform. The temperature
and irradiance radiation measurements were taken from the
University of Quintana Roo meteorological station (DAVIS
model Vantage PRO2) in Mexico.

A. TEST-SCENARIO 1: FIXED TEMPERATURE -
VARIABLE IRRADIANCE

The first test-case scenario considers the fixed-point toolbox
of Matlab-Simulink to transfer the evaluation data to the
FPGA. A set of variations on irradiance levels that generate
output voltage and power values on a PV array based on
Multi-crystalline Kyocera KG200GT PV modules are emu-
lated with a fixed temperature value of 25°C.

Figure 13 shows a comparative analysis of the response
of the Kalman-MPPT implementation for solar irradiance
variations. The output voltage and power of the Kalman-
MPPT HW unit is compared with the response of the P&O
method.

From the analysis of Figure 13, one can deduce that a
reduction in irradiance levels reduce the PV current; there-
fore, the captured power is proportionally reduced, and con-
sequently, the voltage for maximum power collection is also
modified. However, it is worth to mention that Kalman-
MPPT has a better response than P&O, as well as, a good
convergence of the DAB closed-loop controller.

B. TEST-SCENARIO 2: FIXED IRRADIANCE - VARIABLE
TEMPERATURE

The second test-case scenario considers the emulation of a
data set of output voltage and power of the same Kyocera
KG200GT PV array using a fixed irradiance of 1000 W/m?
and variations on temperature levels.

Figure 14 shows the input temperature variations and the
comparative results of the output voltage and power of the
system without MPPT, the output of the HW Kalman-MPPT
core compared with the P&O method and the DAB converter.
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FIGURE 12. HW/SW codesign with the Kalman-MPPT as the coprocessor PL unit.

As presented in Figure 14, an increase in temperature
levels causes a change in the voltage and power of the PV
array. The Kalman-MPPT shows a better response than the
system without Kalman and the P&O. Also, the closed-loop
controller implementation had a good convergence at the
output DAB converter. Notice that temperature changes have
more impact in the system than irradiance variations.

C. TEST-SCENARIO 3: IRRADIANCE AND
TEMPERATURE VARIATIONS

The third test-case scenario considers variations of irradiance
and temperature levels at the same time. The data set is
emulated achieving output voltage and power disturbances in
the PV array. The input temperature and irradiance variations
are illustrated in Figure 15. Also, the FPGA-based output
voltage and power of the Kalman-MPPT core, the system
output without MPPT and the output DAB-SST converter are
reported.

Despite extreme variations in temperature and irradiance,
the Kalman-MPPT shows a better performance in compar-
ison of the without Kalman system and P&O method as
illustrated in Figure 15. Also, the closed-loop controller
demonstrates a good integration with the DAB converter.

D. TEST-SCENARIO 4: MEASUREMENTS OF
IRRADIANCE AND TEMPERATURE VARIATION OF A
WEATHER STATION

The last test-case scenario uses the temperature and irradi-
ance radiation measurements of the meteorological station.

VOLUME 4, 2020

The voltage and power measurements were applied off-line
for this test. Figure 16 shows the output response with and
without Kalman-MPPT.

The Kalman-MPPT implementation has been successfully
adapted via the HW/SW co-design technique. The test-case
scenarios demonstrate the performance achieved with our
presented approach and the SST-based DAB converter.

E. ARCHITECTURE PERFORMANCE ANALYSIS

The results and performance of the Kalman-MPPT archi-
tecture integrated with the DAB-SST converter using the
HW/SW co-design are presented. The design is implemented
using Verilog-HDL and synthesized with the Vivado design
suite HL. WebPack tool.

Table 2 summarizes the HW implementation results on
the Xilinx Zybo Programmable System-on-Chip, which inte-
grates a dual-core ARM Cortex-A9 processor and the FPGA-
target XC7Z010-1CLG400C. The table analyzes the accu-
racy and area trade-off of the proposed architecture in terms
of hardware resources and SQNR for different architecture’s
number of bits. The Optimize Instantiated Primitives Synthe-
sis (balanced mode) option is used in the Xilinx synthesis
tool. The analysis of Table 2 iindicates a well-balanced
design of the Kalman-MPPT core for 24 bits and 55dB of
SQNR. Note the hardware resource scalability analysis for
28- and 32-bits architectures with an increase in the accuracy
of ~4dB.

The time processing result is the following. The total ex-
ecution time for Kalman-MPPT operation is equal to 1.75us

7
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FIGURE 13. Results of Kalman-MPPT implementation for extreme irradiance
disturbances.

TABLE 2. Area performance analysis of Kalman-MPPT core.

FPGA XC7Z010-1CLG400C
Kalman MPPT HW word-lenght (bits)
24 [ 28 | 32
Area resources
Clock. freq. (MHz) 100 70 68.8
Slice registers 780 | 891 995
Slice LUTs 567 684 734
DSPs 18 36 36
Accuracy
SQNR (dBs) | 514 | 54 | 56

with a latency of 970 ns.

Table 3 shows a comparative analysis of our proposed
design with other similar state-of-art FPGA designs. Note
the design technique used in each reference for the complex
analysis of the arithmetic operations. For example, reference
[19] based its Kalman model design on the sign function. [21]
uses IP-core functions of Xilinx-Matlab/Simulink and [20]
implements a pipelined technique. However, the presented
results demonstrate that the PPA technique achieved fewer
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FIGURE 14. Results of Kalman-MPPT implementation for temperature
variations.

hardware resources than the other state-of-art implementa-
tions.

To test our design, the Kalman-MPPT is adapted to a DAB-
SST converter using the HW/SW co-design technique. In
the experiment, the Kalman-MPPT is employed as hardware
coprocessor and the Cortex-A9 ARM processor is used for
the DAB-SST closed-loop controller. This reduces computa-
tional resources and space area enabling a low cost FPGA
implementation. The whole co-design is implemented in the
Xilinx Zybo platform.

Finally, the time analysis of the co-design is presented in
(15), as follows:

teo—design = tax1 +tkaiman—MpPPT +tDAB—355T, (15)

where fco—design 1s the total time for the Kalman-MPPT
adapted in the DAB-SST, t4xs is the intercommunication
time between the ARM and FPGA device, t g aiman—MPPT
is the processing time of the Kalman-MPPT using PPA tech-
nique, and tpap—_gst is the processing time of the sequen-
tial closed-loop controller in the dual-core ARM processor of
the DAB-SST control.
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TABLE 3. Performance comparative analysis of the FPGA-based Kalman-MPPT core with state-of-art implementations.

[19] [21] [18] [50] Our design
. Kalman-MPPT | Fuzzy-MPPT | Reduced-EKalman | Unscented-Kalman | Kalman-MPPT
FPGA analysis - - — -
Sign-function SysGen Pipeline-design IP-core PPA
Word-length (bits) 42 12 22 floating-point 24
Maximum frequency (MHz) 53 50 12.5 100 98.8
Latency (ns) - - - - 970
Slice Registers 20,770 12 5,996 7,688 780
Slice LUTs 15,773 1,336 20,823 5,764 567
DSP48 51 - 5 35 18
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FIGURE 15. FPGA-based Kalman-MPPT results for temperature and
irradiance variations.

The resulting performance for the implementation is
taxr equal to 0.337 ms, txaiman—mppr = 1.75us, and
tpaBp—ssT = 3.57 ms. Therefore, the total time of the co-
design implementation is 3.9087 ms.

The presented results demonstrate a well-balanced HW
design implementation of the Kalman-MPPT integrated in
the DAB-SST converter. The comparative analysis presented
in the test-case scenarios show better tracking responses than
the reference P&O method with a low-cost and low-area
FPGA implementation.
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FIGURE 16. FPGA-based Kalman-MPPT results for temperature and
irradiance measurements in University of Quintana Roo, Mexico.

V. DISCUSSION

Hardware implementation of complex arithmetic operations
is expensive in FPGA resources. The current literature re-
view in introduction section and the Kalman-MPPT model
presented in Section 2.1 show the complexity of the arith-
metic operations. Particularly, the reciprocal operations in
(4) and (5) are essential for the Kalman-MPPT, however,
the implementation is computationally costly demanding a
lot of FPGA resources. The integration of PPA and HW/SW
co-design techniques are used as described in this study
for efficient incorporation of PV renewable energy arrays
with DAB-SST converters. The HW design methodology
described in Section 3.1 includes a bit-width optimization
strategy to identify the required number of bits of the fixed-
point design. Notice that for a well-balanced area-accuracy
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design, it is necessary to apply a non-uniform hierarchical
segmentation to the PPA design. Also, floating-point im-
plementations, such as most of the IP-cores, require a long
execution time and large area resources than full-custom
specific fixed-point architectures.

As can be seen in the comparative area performance analy-
sis of Table 3, our proposed Kalman-MPPT design has fewer
hardware resources than the FPGA implementations of [18],
[19], [21], [50]. The number of Slice registers, Slice LUTs
and DSP48 FPGA elements used in the reference works
in the comparative table suggest the selection of expensive
FPGA or DSP devices. In this paper, our proposed architec-
ture offers a low-cost, rapid prototyping and a well-balanced
FPGA design with fewer hardware resource instead of tra-
ditional implementations with digital controllers, such as the
1202-dSPace [51]. This design is suitable to be implemented
in a low-cost QMTECH Xilinx FPGA Spartan6 XC6SLX16
Spartan-6 of less than 20 USD. The Kalman-MPPT logic
unit represents an interesting solution for DC microgrids.
The FPGA-based rapid prototyping with the HW/SW co-
design is a low-cost and low-area solution but with a high-
accuracy performance, in comparison of other state-of-art
implementations.

VI. CONCLUSIONS

DC microgrid systems are considered a key technology for
the implementation of future electric power distribution sys-
tems. In this study, an FPGA Kalman-MPPT implementation
was implemented and adapted into a DAB-SST converter.
The proposal uses the HW/SW codesign, integrating the
Kalman-MPPT logic core and a closed-loop PID controller in
the dual-core ARM processor on the Xilinx Zybo platform.

The Kalman-MPPT logic core was implemented using a
hardware architecture that requires the reciprocal operation
computed by a non-uniform piecewise polynomial approx-
imation. The results show that the hardware resources are
significantly reduced in comparison with state-of-art FPGA
implementations. The HW synthesis reveals an achieved
SQNR of 52 dB with 24 bits word-length, with 780 Slice
registers, 567 Slice LUTs and 18 DSP48 hardware resources.
The proposed logic core implementation can be used as a
coprocessor unit in a HW/SW codesign paradigm for many
DC microgrid applications.

Finally, the Kalman-MPPT implementation integrated
with a DAB converter can improve the actual electric distri-
bution system in many countries, representing an important
approach to route efficiently renewable energy in DC micro-
grids.
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