4,329 research outputs found

    Fast and reliable estimation schemes in RFID systems

    Full text link

    Perfect tag identification protocol in RFID networks

    Full text link
    Radio Frequency IDentification (RFID) systems are becoming more and more popular in the field of ubiquitous computing, in particular for objects identification. An RFID system is composed by one or more readers and a number of tags. One of the main issues in an RFID network is the fast and reliable identification of all tags in the reader range. The reader issues some queries, and tags properly answer. Then, the reader must identify the tags from such answers. This is crucial for most applications. Since the transmission medium is shared, the typical problem to be faced is a MAC-like one, i.e. to avoid or limit the number of tags transmission collisions. We propose a protocol which, under some assumptions about transmission techniques, always achieves a 100% perfomance. It is based on a proper recursive splitting of the concurrent tags sets, until all tags have been identified. The other approaches present in literature have performances of about 42% in the average at most. The counterpart is a more sophisticated hardware to be deployed in the manufacture of low cost tags.Comment: 12 pages, 1 figur

    Massive M2M Access with Reliability Guarantees in LTE Systems

    Full text link
    Machine-to-Machine (M2M) communications are one of the major drivers of the cellular network evolution towards 5G systems. One of the key challenges is on how to provide reliability guarantees to each accessing device in a situation in which there is a massive number of almost-simultaneous arrivals from a large set of M2M devices. The existing solutions take a reactive approach in dealing with massive arrivals, such as non-selective barring when a massive arrival event occurs, which implies that the devices cannot get individual reliability guarantees. In this paper we propose a proactive approach, based on a standard operation of the cellular access. The access procedure is divided into two phases, an estimation phase and a serving phase. In the estimation phase the number of arrivals is estimated and this information is used to tune the amount of resources allocated in the serving phase. Our results show that the proactive approach is instrumental in delivering high access reliability to the M2M devices.Comment: Accepted for presentation in ICC 201

    Reliable and Fast Estimation Systems for Wireless Media and RFID Systems

    Get PDF

    PLACE: Physical Layer Cardinality Estimation for Large-Scale RFID Systems

    Full text link
    • …
    corecore