60,836 research outputs found

    Simultaneous Selection of Multiple Important Single Nucleotide Polymorphisms in Familial Genome Wide Association Studies Data

    Full text link
    We propose a resampling-based fast variable selection technique for selecting important Single Nucleotide Polymorphisms (SNP) in multi-marker mixed effect models used in twin studies. Due to computational complexity, current practice includes testing the effect of one SNP at a time, commonly termed as `single SNP association analysis'. Joint modeling of genetic variants within a gene or pathway may have better power to detect the relevant genetic variants, hence we adapt our recently proposed framework of ee-values to address this. In this paper, we propose a computationally efficient approach for single SNP detection in families while utilizing information on multiple SNPs simultaneously. We achieve this through improvements in two aspects. First, unlike other model selection techniques, our method only requires training a model with all possible predictors. Second, we utilize a fast and scalable bootstrap procedure that only requires Monte-Carlo sampling to obtain bootstrapped copies of the estimated vector of coefficients. Using this bootstrap sample, we obtain the ee-value for each SNP, and select SNPs having ee-values below a threshold. We illustrate through numerical studies that our method is more effective in detecting SNPs associated with a trait than either single-marker analysis using family data or model selection methods that ignore the familial dependency structure. We also use the ee-values to perform gene-level analysis in nuclear families and detect several SNPs that have been implicated to be associated with alcohol consumption

    Increasing power for voxel-wise genome-wide association studies : the random field theory, least square kernel machines and fast permutation procedures

    Get PDF
    Imaging traits are thought to have more direct links to genetic variation than diagnostic measures based on cognitive or clinical assessments and provide a powerful substrate to examine the influence of genetics on human brains. Although imaging genetics has attracted growing attention and interest, most brain-wide genome-wide association studies focus on voxel-wise single-locus approaches, without taking advantage of the spatial information in images or combining the effect of multiple genetic variants. In this paper we present a fast implementation of voxel- and cluster-wise inferences based on the random field theory to fully use the spatial information in images. The approach is combined with a multi-locus model based on least square kernel machines to associate the joint effect of several single nucleotide polymorphisms (SNP) with imaging traits. A fast permutation procedure is also proposed which significantly reduces the number of permutations needed relative to the standard empirical method and provides accurate small p-value estimates based on parametric tail approximation. We explored the relation between 448,294 single nucleotide polymorphisms and 18,043 genes in 31,662 voxels of the entire brain across 740 elderly subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Structural MRI scans were analyzed using tensor-based morphometry (TBM) to compute 3D maps of regional brain volume differences compared to an average template image based on healthy elderly subjects. We find method to be more sensitive compared with voxel-wise single-locus approaches. A number of genes were identified as having significant associations with volumetric changes. The most associated gene was GRIN2B, which encodes the N-methyl-d-aspartate (NMDA) glutamate receptor NR2B subunit and affects both the parietal and temporal lobes in human brains. Its role in Alzheimer's disease has been widely acknowledged and studied, suggesting the validity of the approach. The various advantages over existing approaches indicate a great potential offered by this novel framework to detect genetic influences on human brains

    Gene expression in large pedigrees: analytic approaches.

    Get PDF
    BackgroundWe currently have the ability to quantify transcript abundance of messenger RNA (mRNA), genome-wide, using microarray technologies. Analyzing genotype, phenotype and expression data from 20 pedigrees, the members of our Genetic Analysis Workshop (GAW) 19 gene expression group published 9 papers, tackling some timely and important problems and questions. To study the complexity and interrelationships of genetics and gene expression, we used established statistical tools, developed newer statistical tools, and developed and applied extensions to these tools.MethodsTo study gene expression correlations in the pedigree members (without incorporating genotype or trait data into the analysis), 2 papers used principal components analysis, weighted gene coexpression network analysis, meta-analyses, gene enrichment analyses, and linear mixed models. To explore the relationship between genetics and gene expression, 2 papers studied expression quantitative trait locus allelic heterogeneity through conditional association analyses, and epistasis through interaction analyses. A third paper assessed the feasibility of applying allele-specific binding to filter potential regulatory single-nucleotide polymorphisms (SNPs). Analytic approaches included linear mixed models based on measured genotypes in pedigrees, permutation tests, and covariance kernels. To incorporate both genotype and phenotype data with gene expression, 4 groups employed linear mixed models, nonparametric weighted U statistics, structural equation modeling, Bayesian unified frameworks, and multiple regression.Results and discussionRegarding the analysis of pedigree data, we found that gene expression is familial, indicating that at least 1 factor for pedigree membership or multiple factors for the degree of relationship should be included in analyses, and we developed a method to adjust for familiality prior to conducting weighted co-expression gene network analysis. For SNP association and conditional analyses, we found FaST-LMM (Factored Spectrally Transformed Linear Mixed Model) and SOLAR-MGA (Sequential Oligogenic Linkage Analysis Routines -Major Gene Analysis) have similar type 1 and type 2 errors and can be used almost interchangeably. To improve the power and precision of association tests, prior knowledge of DNase-I hypersensitivity sites or other relevant biological annotations can be incorporated into the analyses. On a biological level, eQTL (expression quantitative trait loci) are genetically complex, exhibiting both allelic heterogeneity and epistasis. Including both genotype and phenotype data together with measurements of gene expression was found to be generally advantageous in terms of generating improved levels of significance and in providing more interpretable biological models.ConclusionsPedigrees can be used to conduct analyses of and enhance gene expression studies

    Second-generation PLINK: rising to the challenge of larger and richer datasets

    Get PDF
    PLINK 1 is a widely used open-source C/C++ toolset for genome-wide association studies (GWAS) and research in population genetics. However, the steady accumulation of data from imputation and whole-genome sequencing studies has exposed a strong need for even faster and more scalable implementations of key functions. In addition, GWAS and population-genetic data now frequently contain probabilistic calls, phase information, and/or multiallelic variants, none of which can be represented by PLINK 1's primary data format. To address these issues, we are developing a second-generation codebase for PLINK. The first major release from this codebase, PLINK 1.9, introduces extensive use of bit-level parallelism, O(sqrt(n))-time/constant-space Hardy-Weinberg equilibrium and Fisher's exact tests, and many other algorithmic improvements. In combination, these changes accelerate most operations by 1-4 orders of magnitude, and allow the program to handle datasets too large to fit in RAM. This will be followed by PLINK 2.0, which will introduce (a) a new data format capable of efficiently representing probabilities, phase, and multiallelic variants, and (b) extensions of many functions to account for the new types of information. The second-generation versions of PLINK will offer dramatic improvements in performance and compatibility. For the first time, users without access to high-end computing resources can perform several essential analyses of the feature-rich and very large genetic datasets coming into use.Comment: 2 figures, 1 additional fil

    The Genetic Architecture of Noise-Induced Hearing Loss: Evidence for a Gene-by-Environment Interaction.

    Get PDF
    The discovery of environmentally specific genetic effects is crucial to the understanding of complex traits, such as susceptibility to noise-induced hearing loss (NIHL). We describe the first genome-wide association study (GWAS) for NIHL in a large and well-characterized population of inbred mouse strains, known as the Hybrid Mouse Diversity Panel (HMDP). We recorded auditory brainstem response (ABR) thresholds both pre and post 2-hr exposure to 10-kHz octave band noise at 108 dB sound pressure level in 5-6-wk-old female mice from the HMDP (4-5 mice/strain). From the observation that NIHL susceptibility varied among the strains, we performed a GWAS with correction for population structure and mapped a locus on chromosome 6 that was statistically significantly associated with two adjacent frequencies. We then used a "genetical genomics" approach that included the analysis of cochlear eQTLs to identify candidate genes within the GWAS QTL. In order to validate the gene-by-environment interaction, we compared the effects of the postnoise exposure locus with that from the same unexposed strains. The most significant SNP at chromosome 6 (rs37517079) was associated with noise susceptibility, but was not significant at the same frequencies in our unexposed study. These findings demonstrate that the genetic architecture of NIHL is distinct from that of unexposed hearing levels and provide strong evidence for gene-by-environment interactions in NIHL
    • ā€¦
    corecore