22,192 research outputs found

    Fast Predictive Image Registration

    Full text link
    We present a method to predict image deformations based on patch-wise image appearance. Specifically, we design a patch-based deep encoder-decoder network which learns the pixel/voxel-wise mapping between image appearance and registration parameters. Our approach can predict general deformation parameterizations, however, we focus on the large deformation diffeomorphic metric mapping (LDDMM) registration model. By predicting the LDDMM momentum-parameterization we retain the desirable theoretical properties of LDDMM, while reducing computation time by orders of magnitude: combined with patch pruning, we achieve a 1500x/66x speed up compared to GPU-based optimization for 2D/3D image registration. Our approach has better prediction accuracy than predicting deformation or velocity fields and results in diffeomorphic transformations. Additionally, we create a Bayesian probabilistic version of our network, which allows evaluation of deformation field uncertainty through Monte Carlo sampling using dropout at test time. We show that deformation uncertainty highlights areas of ambiguous deformations. We test our method on the OASIS brain image dataset in 2D and 3D

    A Lagrangian Dynamical Theory for the Mass Function of Cosmic Structures: I Dynamics

    Get PDF
    A new theory for determining the mass function of cosmic structures is presented. It relies on a realistic treatment of collapse dynamics. Gravitational collapse is analyzed in the Lagrangian perturbative framework. Lagrangian perturbations provide an approximation of truncated type, i.e. small-scale structure is filtered out. The collapse time is suitably defined as the instant at which orbit crossing takes place. The convergence of the Lagrangian series in predicting the collapse time of a homogeneous ellipsoid is demonstrated; it is also shown that third-order calculations are necessary in predicting collapse. Then, the Lagrangian prediction, with a correction for quasi-spherical perturbations, can be used to determine the collapse time of a homogeneous ellipsoid in a fast and precise way. Furthermore, ellipsoidal collapse can be considered as a particular truncation of the Lagrangian series. Gaussian fields with scale-free power spectra are then considered. The Lagrangian series for the collapse time is found to converge when the collapse time is not large. In this case, ellipsoidal collapse gives a fast and accurate approximation of the collapse time; spherical collapse is found to poorly reproduce the collapse time, even in a statistical sense. Analytical fits of the distribution functions of the inverse collapse times, as predicted by the ellipsoid model and by third-order Lagrangian theory, are given. These will be necessary for a determination of the mass function, which will be given in paper II.Comment: 18 pages, Latex, uses mn.sty and psfig, 7 postscript figures (fig. 2 and 3 not complete). Revised version, stylistic changes. MNRAS, in pres

    Naturally light dilatons from nearly marginal deformations

    Full text link
    We discuss the presence of a light dilaton in CFTs deformed by a nearly-marginal operator O, in the holographic realizations consisting of confining RG flows that end on a soft wall. Generically, the deformations induce a condensate , and the dilaton mode can be identified as the fluctuation of . We obtain a mass formula for the dilaton as a certain average along the RG flow. The dilaton is naturally light whenever i) confinement is reached fast enough (such as via the condensation of O) and ii) the beta function is small (walking) at the condensation scale. These conditions are satisfied for a class of models with a bulk pseudo-Goldstone boson whose potential is nearly flat at small field and exponential at large field values. Thus, the recent observation by Contino, Pomarol and Rattazzi holds in CFTs with a single nearly-marginal operator. We also discuss the holographic method to compute the condensate , based on solving the first-order nonlinear differential equation that the beta function satisfies.Comment: 37 pages, 7 figures; v2 typos corrected, references added; v3 comments added in sec. 2.2, footnote 9 adde

    Towards Efficient Modelling Of Macro And Micro Tool Deformations In Sheet Metal Forming

    Get PDF
    During forming, the deep drawing press and tools undergo large loads, and even though they are extremely sturdy\ud structures, deformations occur. This causes changes in the geometry of the tool surface and the gap width between the tools.\ud The deep drawing process can be very sensitive to these deformations. Tool and press deformations can be split into two\ud categories. The deflection of the press bed-plate or slide and global deformation in the deep drawing tools are referred to as\ud macro press deformation. Micro-deformation occurs directly at the surfaces of the forming tools and is one or two orders\ud lower in magnitude.\ud The goal is to include tool deformation in a FE forming simulation. This is not principally problematic, however, the FE\ud meshes become very large, causing an extremely large increase in numerical effort. In this paper, various methods are\ud discussed to include tool elasticity phenomena with acceptable cost. For macro deformation, modal methods or ’deformable\ud rigid bodies’ provide interesting possibilities. Static condensation is also a well known method to reduce the number of DOFs,\ud however the increasing bandwidth of the stiffness matrix limits this method severely, and decreased calculation times are not\ud expected. At the moment, modeling Micro-deformation remains unfeasible. Theoretically, it can be taken into account, but\ud the results may not be reliable due to the limited size of the tool meshes and due to approximations in the contact algorithms

    Surface Networks

    Full text link
    We study data-driven representations for three-dimensional triangle meshes, which are one of the prevalent objects used to represent 3D geometry. Recent works have developed models that exploit the intrinsic geometry of manifolds and graphs, namely the Graph Neural Networks (GNNs) and its spectral variants, which learn from the local metric tensor via the Laplacian operator. Despite offering excellent sample complexity and built-in invariances, intrinsic geometry alone is invariant to isometric deformations, making it unsuitable for many applications. To overcome this limitation, we propose several upgrades to GNNs to leverage extrinsic differential geometry properties of three-dimensional surfaces, increasing its modeling power. In particular, we propose to exploit the Dirac operator, whose spectrum detects principal curvature directions --- this is in stark contrast with the classical Laplace operator, which directly measures mean curvature. We coin the resulting models \emph{Surface Networks (SN)}. We prove that these models define shape representations that are stable to deformation and to discretization, and we demonstrate the efficiency and versatility of SNs on two challenging tasks: temporal prediction of mesh deformations under non-linear dynamics and generative models using a variational autoencoder framework with encoders/decoders given by SNs

    Quicksilver: Fast Predictive Image Registration - a Deep Learning Approach

    Get PDF
    This paper introduces Quicksilver, a fast deformable image registration method. Quicksilver registration for image-pairs works by patch-wise prediction of a deformation model based directly on image appearance. A deep encoder-decoder network is used as the prediction model. While the prediction strategy is general, we focus on predictions for the Large Deformation Diffeomorphic Metric Mapping (LDDMM) model. Specifically, we predict the momentum-parameterization of LDDMM, which facilitates a patch-wise prediction strategy while maintaining the theoretical properties of LDDMM, such as guaranteed diffeomorphic mappings for sufficiently strong regularization. We also provide a probabilistic version of our prediction network which can be sampled during the testing time to calculate uncertainties in the predicted deformations. Finally, we introduce a new correction network which greatly increases the prediction accuracy of an already existing prediction network. We show experimental results for uni-modal atlas-to-image as well as uni- / multi- modal image-to-image registrations. These experiments demonstrate that our method accurately predicts registrations obtained by numerical optimization, is very fast, achieves state-of-the-art registration results on four standard validation datasets, and can jointly learn an image similarity measure. Quicksilver is freely available as an open-source software.Comment: Add new discussion

    Universality of soft and collinear factors in hard-scattering factorization

    Full text link
    Universality in QCD factorization of parton densities, fragmentation functions, and soft factors is endangered by the process dependence of the directions of Wilson lines in their definitions. We find a choice of directions that is consistent with factorization and that gives universality between e^+e^- annihilation, semi-inclusive deep-inelastic scattering, and the Drell-Yan process. Universality is only modified by a time-reversal transformation of the soft function and parton densities between Drell-Yan and the other processes, whose only effect is the known reversal of sign for T-odd parton densities like the Sivers function. The modifications of the definitions needed to remove rapidity divergences with light-like Wilson lines do not affect the results.Comment: 4 pages. Extra references. Text and references as in published versio
    • …
    corecore