9 research outputs found

    Fast and compact self-stabilizing verification, computation, and fault detection of an MST

    Get PDF
    This paper demonstrates the usefulness of distributed local verification of proofs, as a tool for the design of self-stabilizing algorithms.In particular, it introduces a somewhat generalized notion of distributed local proofs, and utilizes it for improving the time complexity significantly, while maintaining space optimality. As a result, we show that optimizing the memory size carries at most a small cost in terms of time, in the context of Minimum Spanning Tree (MST). That is, we present algorithms that are both time and space efficient for both constructing an MST and for verifying it.This involves several parts that may be considered contributions in themselves.First, we generalize the notion of local proofs, trading off the time complexity for memory efficiency. This adds a dimension to the study of distributed local proofs, which has been gaining attention recently. Specifically, we design a (self-stabilizing) proof labeling scheme which is memory optimal (i.e., O(log⁥n)O(\log n) bits per node), and whose time complexity is O(log⁥2n)O(\log ^2 n) in synchronous networks, or O(Δlog⁥3n)O(\Delta \log ^3 n) time in asynchronous ones, where Δ\Delta is the maximum degree of nodes. This answers an open problem posed by Awerbuch and Varghese (FOCS 1991). We also show that Ω(log⁥n)\Omega(\log n) time is necessary, even in synchronous networks. Another property is that if ff faults occurred, then, within the requireddetection time above, they are detected by some node in the O(flog⁥n)O(f\log n) locality of each of the faults.Second, we show how to enhance a known transformer that makes input/output algorithms self-stabilizing. It now takes as input an efficient construction algorithm and an efficient self-stabilizing proof labeling scheme, and produces an efficient self-stabilizing algorithm. When used for MST, the transformer produces a memory optimal self-stabilizing algorithm, whose time complexity, namely, O(n)O(n), is significantly better even than that of previous algorithms. (The time complexity of previous MST algorithms that used Ω(log⁥2n)\Omega(\log^2 n) memory bits per node was O(n2)O(n^2), and the time for optimal space algorithms was O(n∣E∣)O(n|E|).) Inherited from our proof labelling scheme, our self-stabilising MST construction algorithm also has the following two properties: (1) if faults occur after the construction ended, then they are detected by some nodes within O(log⁥2n)O(\log ^2 n) time in synchronous networks, or within O(Δlog⁥3n)O(\Delta \log ^3 n) time in asynchronous ones, and (2) if ff faults occurred, then, within the required detection time above, they are detected within the O(flog⁥n)O(f\log n) locality of each of the faults. We also show how to improve the above two properties, at the expense of some increase in the memory

    Vérification de preuves distribuées : compromis temps-espace

    Get PDF
    International audienceUne preuve distribuĂ©e est un mĂ©canisme permettant aux nƓuds d'un rĂ©seau de dĂ©cider collectivement et efficacement si le rĂ©seau est dans une configuration correcte, par rapport Ă  un certain prĂ©dicat. La vĂ©rification de ces preuves est gĂ©nĂ©ralement faite en un nombre constant de rondes. Dans cet article nous Ă©tudions l'impact d'un temps de vĂ©rification non-constant sur la taille des preuves

    Survey of Distributed Decision

    Get PDF
    We survey the recent distributed computing literature on checking whether a given distributed system configuration satisfies a given boolean predicate, i.e., whether the configuration is legal or illegal w.r.t. that predicate. We consider classical distributed computing environments, including mostly synchronous fault-free network computing (LOCAL and CONGEST models), but also asynchronous crash-prone shared-memory computing (WAIT-FREE model), and mobile computing (FSYNC model)

    Compact Deterministic Self-Stabilizing Leader Election: The Exponential Advantage of Being Talkative

    Full text link
    This paper focuses on compact deterministic self-stabilizing solutions for the leader election problem. When the protocol is required to be \emph{silent} (i.e., when communication content remains fixed from some point in time during any execution), there exists a lower bound of Omega(\log n) bits of memory per node participating to the leader election (where n denotes the number of nodes in the system). This lower bound holds even in rings. We present a new deterministic (non-silent) self-stabilizing protocol for n-node rings that uses only O(\log\log n) memory bits per node, and stabilizes in O(n\log^2 n) rounds. Our protocol has several attractive features that make it suitable for practical purposes. First, the communication model fits with the model used by existing compilers for real networks. Second, the size of the ring (or any upper bound on this size) needs not to be known by any node. Third, the node identifiers can be of various sizes. Finally, no synchrony assumption, besides a weakly fair scheduler, is assumed. Therefore, our result shows that, perhaps surprisingly, trading silence for exponential improvement in term of memory space does not come at a high cost regarding stabilization time or minimal assumptions

    Randomized proof-labeling schemes

    Get PDF
    International audienceProof-labeling schemes, introduced by Korman et al. (Distrib Comput 22(4):215–233, 2010. https://doi.org/10.1007/s00446-010-0095-3), are a mechanism to certify that a network configuration satisfies a given boolean predicate. Such mechanisms find applications in many contexts, e.g., the design of fault-tolerant distributed algorithms. In a proof-labeling scheme, predicate verification consists of neighbors exchanging labels, whose contents depends on the predicate. In this paper, we introduce the notion of randomized proof-labeling schemes where messages are randomized and correctness is probabilistic. We show that randomization reduces verification complexity exponentially while guaranteeing probability of correctness arbitrarily close to one. We also present a novel message-size lower bound technique that applies to deterministic as well as randomized proof-labeling schemes. Using this technique, we establish several tight bounds on the verification complexity of MST, acyclicity, connectivity, and longest cycle size
    corecore