2 research outputs found

    Fast and efficient countermeasure for MAC layer misbehavior in MANETs

    Get PDF
    In this paper, we deal with backoff cheating technique in IEEE802.11 based MANETs and propose a novel scheme, dubbed HsF-MAC (Hash Function based MAC protocol), to cope with it. In contrast to the existing solutions, HsF-MAC allows MANET nodes to re-calculate the backoff value used by their 1-hop neighbors and immediately detect the misbehaving ones. Moreover, the colluding behavior of two cheating nodes is also considered along with effective countermeasures. A reconciliation based reaction mechanism is finally designed. The simulation results, under different topologies and network conditions, have validated the effectiveness of HsF-MAC

    Secure Intelligent Vehicular Network Including Real-Time Detection of DoS Attacks in IEEE 802.11P Using Fog Computing

    Get PDF
    VANET (Vehicular ad hoc network) has a main objective to improve driver safety and traffic efficiency. Intermittent exchange of real-time safety message delivery in VANET has become an urgent concern, due to DoS (Denial of service), and smart and normal intrusions (SNI) attacks. Intermittent communication of VANET generates huge amount of data which requires typical storage and intelligence infrastructure. Fog computing (FC) plays an important role in storage, computation, and communication need. In this research, Fog computing (FC) integrates with hybrid optimization algorithms (OAs) including: Cuckoo search algorithm (CSA), Firefly algorithm (FA) and Firefly neural network, in addition to key distribution establishment (KDE), for authenticating both the network level and the node level against all attacks for trustworthiness in VANET. The proposed scheme which is also termed “Secure Intelligent Vehicular Network using fog computing” (SIVNFC) utilizes feedforward back propagation neural network (FFBP-NN). This is also termed the firefly neural, is used as a classifier to distinguish between the attacking vehicles and genuine vehicles. The proposed scheme is initially compared with the Cuckoo and FA, and the Firefly neural network to evaluate the QoS parameters such as jitter and throughput. In addition, VANET is a means whereby Intelligent Transportation System (ITS) has become important for the benefit of daily lives. Therefore, real-time detection of all form attacks including hybrid DoS attacks in IEEE 802.11p, has become an urgent attention for VANET. This is due to sporadic real-time exchange of safety and road emergency message delivery in VANET. Sporadic communication in VANET has the tendency to generate enormous amount of message. This leads to the RSU (roadside unit) or the CPU (central processing unit) overutilization for computation. Therefore, it is required that efficient storage and intelligence VANET infrastructure architecture (VIA), which include trustworthiness is desired. Vehicular Cloud and Fog Computing (VFC) play an important role in efficient storage, computations, and communication need for VANET. This dissertation also utilizes VFC integration with hybrid optimization algorithms (OAs), which also possess swarm intelligence including: Cuckoo/CSA Artificial Bee Colony (ABC) Firefly/Genetic Algorithm (GA), in additionally to provide Real-time Detection of DoS attacks in IEEE 802.11p, using VFC for Intelligent Vehicular network. Vehicles are moving with certain speed and the data is transmitted at 30Mbps. Firefly FFBPNN (Feed forward back propagation neural network) has been used as a classifier to also distinguish between the attacked vehicles and the genuine vehicle. The proposed scheme has also been compared with Cuckoo/CSA ABC and Firefly GA by considering Jitter, Throughput and Prediction accuracy
    corecore