9 research outputs found

    Fast and Compact Exact Distance Oracle for Planar Graphs

    Full text link
    For a given a graph, a distance oracle is a data structure that answers distance queries between pairs of vertices. We introduce an O(n5/3)O(n^{5/3})-space distance oracle which answers exact distance queries in O(logn)O(\log n) time for nn-vertex planar edge-weighted digraphs. All previous distance oracles for planar graphs with truly subquadratic space i.e., space O(n2ϵ)O(n^{2 - \epsilon}) for some constant ϵ>0\epsilon > 0) either required query time polynomial in nn or could only answer approximate distance queries. Furthermore, we show how to trade-off time and space: for any Sn3/2S \ge n^{3/2}, we show how to obtain an SS-space distance oracle that answers queries in time O((n5/2/S3/2)logn)O((n^{5/2}/ S^{3/2}) \log n). This is a polynomial improvement over the previous planar distance oracles with o(n1/4)o(n^{1/4}) query time

    Exact Distance Oracles for Planar Graphs with Failing Vertices

    Full text link
    We consider exact distance oracles for directed weighted planar graphs in the presence of failing vertices. Given a source vertex uu, a target vertex vv and a set XX of kk failed vertices, such an oracle returns the length of a shortest uu-to-vv path that avoids all vertices in XX. We propose oracles that can handle any number kk of failures. More specifically, for a directed weighted planar graph with nn vertices, any constant kk, and for any q[1,n]q \in [1,\sqrt n], we propose an oracle of size O~(nk+3/2q2k+1)\tilde{\mathcal{O}}(\frac{n^{k+3/2}}{q^{2k+1}}) that answers queries in O~(q)\tilde{\mathcal{O}}(q) time. In particular, we show an O~(n)\tilde{\mathcal{O}}(n)-size, O~(n)\tilde{\mathcal{O}}(\sqrt{n})-query-time oracle for any constant kk. This matches, up to polylogarithmic factors, the fastest failure-free distance oracles with nearly linear space. For single vertex failures (k=1k=1), our O~(n5/2q3)\tilde{\mathcal{O}}(\frac{n^{5/2}}{q^3})-size, O~(q)\tilde{\mathcal{O}}(q)-query-time oracle improves over the previously best known tradeoff of Baswana et al. [SODA 2012] by polynomial factors for q=Ω(nt)q = \Omega(n^t), t(1/4,1/2]t \in (1/4,1/2]. For multiple failures, no planarity exploiting results were previously known

    Better Tradeoffs for Exact Distance Oracles in Planar Graphs

    Full text link
    We present an O(n1.5)O(n^{1.5})-space distance oracle for directed planar graphs that answers distance queries in O(logn)O(\log n) time. Our oracle both significantly simplifies and significantly improves the recent oracle of Cohen-Addad, Dahlgaard and Wulff-Nilsen [FOCS 2017], which uses O(n5/3)O(n^{5/3})-space and answers queries in O(logn)O(\log n) time. We achieve this by designing an elegant and efficient point location data structure for Voronoi diagrams on planar graphs. We further show a smooth tradeoff between space and query-time. For any S[n,n2]S\in [n,n^2], we show an oracle of size SS that answers queries in O~(max{1,n1.5/S})\tilde O(\max\{1,n^{1.5}/S\}) time. This new tradeoff is currently the best (up to polylogarithmic factors) for the entire range of SS and improves by polynomial factors over all the previously known tradeoffs for the range S[n,n5/3]S \in [n,n^{5/3}]

    Shortest Paths in Geometric Intersection Graphs

    Get PDF
    This thesis studies shortest paths in geometric intersection graphs, which can model, among others, ad-hoc communication and transportation networks. First, we consider two classical problems in the field of algorithms, namely Single-Source Shortest Paths (SSSP) and All-Pairs Shortest Paths (APSP). In SSSP we want to compute the shortest paths from one vertex of a graph to all other vertices, while in APSP we aim to find the shortest path between every pair of vertices. Although there is a vast literature for these problems in many graph classes, the case of geometric intersection graphs has been only partially addressed. In unweighted unit-disk graphs, we show that we can solve SSSP in linear time, after presorting the disk centers with respect to their coordinates. Furthermore, we give the first (slightly) subquadratic-time APSP algorithm by using our new SSSP result, bit tricks, and a shifted-grid-based decomposition technique. In unweighted, undirected geometric intersection graphs, we present a simple and general technique that reduces APSP to static, offline intersection detection. Consequently, we give fast APSP algorithms for intersection graphs of arbitrary disks, axis-aligned line segments, arbitrary line segments, d-dimensional axis-aligned boxes, and d-dimensional axis-aligned unit hypercubes. We also provide a near-linear-time SSSP algorithm for intersection graphs of axis-aligned line segments by a reduction to dynamic orthogonal point location. Then, we study two problems that have received considerable attention lately. The first is that of computing the diameter of a graph, i.e., the longest shortest-path distance between any two vertices. In the second, we want to preprocess a graph into a data structure, called distance oracle, such that the shortest path (or its length) between any two query vertices can be found quickly. Since these problems are often too costly to solve exactly, we study their approximate versions. Following a long line of research, we employ Voronoi diagrams to compute a (1+epsilon)-approximation of the diameter of an undirected, non-negatively-weighted planar graph in time near linear in the input size and polynomial in 1/epsilon. The previously best solution had exponential dependency on the latter. Using similar techniques, we can also construct the first (1+epsilon)-approximate distance oracles with similar preprocessing time and space and only O(log(1/\epsilon)) query time. In weighted unit-disk graphs, we present the first near-linear-time (1+epsilon)-approximation algorithm for the diameter and for other related problems, such as the radius and the bichromatic closest pair. To do so, we combine techniques from computational geometry and planar graphs, namely well-separated pair decompositions and shortest-path separators. We also show how to extend our approach to obtain O(1)-query-time (1+epsilon)-approximate distance oracles with near linear preprocessing time and space. Then, we apply these oracles, along with additional ideas, to build a data structure for the (1+epsilon)-approximate All-Pairs Bounded-Leg Shortest Paths (apBLSP) problem in truly subcubic time

    29th International Symposium on Algorithms and Computation: ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan

    Get PDF
    corecore