286 research outputs found

    BehavePassDB: Public Database for Mobile Behavioral Biometrics and Benchmark Evaluation

    Full text link
    Mobile behavioral biometrics have become a popular topic of research, reaching promising results in terms of authentication, exploiting a multimodal combination of touchscreen and background sensor data. However, there is no way of knowing whether state-of-the-art classifiers in the literature can distinguish between the notion of user and device. In this article, we present a new database, BehavePassDB, structured into separate acquisition sessions and tasks to mimic the most common aspects of mobile Human-Computer Interaction (HCI). BehavePassDB is acquired through a dedicated mobile app installed on the subjects devices, also including the case of different users on the same device for evaluation. We propose a standard experimental protocol and benchmark for the research community to perform a fair comparison of novel approaches with the state of the art1. We propose and evaluate a system based on Long-Short Term Memory (LSTM) architecture with triplet loss and modality fusion at score levelThis project has received funding from the European Unions Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grant agreement no. 860315, and from Orange Labs. R. Tolosana and R. Vera-Rodriguez are also supported by INTER-ACTION (PID2021-126521OB-I00 MICINN/FEDER

    DEFT: A new distance-based feature set for keystroke dynamics

    Full text link
    Keystroke dynamics is a behavioural biometric utilised for user identification and authentication. We propose a new set of features based on the distance between keys on the keyboard, a concept that has not been considered before in keystroke dynamics. We combine flight times, a popular metric, with the distance between keys on the keyboard and call them as Distance Enhanced Flight Time features (DEFT). This novel approach provides comprehensive insights into a person's typing behaviour, surpassing typing velocity alone. We build a DEFT model by combining DEFT features with other previously used keystroke dynamic features. The DEFT model is designed to be device-agnostic, allowing us to evaluate its effectiveness across three commonly used devices: desktop, mobile, and tablet. The DEFT model outperforms the existing state-of-the-art methods when we evaluate its effectiveness across two datasets. We obtain accuracy rates exceeding 99% and equal error rates below 10% on all three devices.Comment: 12 pages, 5 figures, 3 tables, conference pape

    BehaveFormer: A Framework with Spatio-Temporal Dual Attention Transformers for IMU enhanced Keystroke Dynamics

    Full text link
    Continuous Authentication (CA) using behavioural biometrics is a type of biometric identification that recognizes individuals based on their unique behavioural characteristics, like their typing style. However, the existing systems that use keystroke or touch stroke data have limited accuracy and reliability. To improve this, smartphones' Inertial Measurement Unit (IMU) sensors, which include accelerometers, gyroscopes, and magnetometers, can be used to gather data on users' behavioural patterns, such as how they hold their phones. Combining this IMU data with keystroke data can enhance the accuracy of behavioural biometrics-based CA. This paper proposes BehaveFormer, a new framework that employs keystroke and IMU data to create a reliable and accurate behavioural biometric CA system. It includes two Spatio-Temporal Dual Attention Transformer (STDAT), a novel transformer we introduce to extract more discriminative features from keystroke dynamics. Experimental results on three publicly available datasets (Aalto DB, HMOG DB, and HuMIdb) demonstrate that BehaveFormer outperforms the state-of-the-art behavioural biometric-based CA systems. For instance, on the HuMIdb dataset, BehaveFormer achieved an EER of 2.95\%. Additionally, the proposed STDAT has been shown to improve the BehaveFormer system even when only keystroke data is used. For example, on the Aalto DB dataset, BehaveFormer achieved an EER of 1.80\%. These results demonstrate the effectiveness of the proposed STDAT and the incorporation of IMU data for behavioural biometric authentication

    BehavePassDB: Public Database for Mobile Behavioral Biometrics and Benchmark Evaluation

    Full text link
    Mobile behavioral biometrics have become a popular topic of research, reaching promising results in terms of authentication, exploiting a multimodal combination of touchscreen and background sensor data. However, there is no way of knowing whether state-of-the-art classifiers in the literature can distinguish between the notion of user and device. In this article, we present a new database, BehavePassDB, structured into separate acquisition sessions and tasks to mimic the most common aspects of mobile Human-Computer Interaction (HCI). BehavePassDB is acquired through a dedicated mobile app installed on the subjects' devices, also including the case of different users on the same device for evaluation. We propose a standard experimental protocol and benchmark for the research community to perform a fair comparison of novel approaches with the state of the art. We propose and evaluate a system based on Long-Short Term Memory (LSTM) architecture with triplet loss and modality fusion at score level.Comment: 11 pages, 3 figure

    Cognitive fingerprint authentication system

    Get PDF
    The Internet is becoming an integral part of nearly every aspect of our lives, protecting the identity and personal privacy is crucial for any web organizations. Unfortunately, although technologies such as cognitive-based user authentication systems toward the adoption of stronger and more secure authentication schemes have proven superiority over the traditional ones, traditional authentication systems such as username/password are still dominate in computer security systems since cognitive-based authentication systems require sophisticated equipments. On the other hand, traditional authentication systems couldn\u27t continuously monitor users after initial login. In this regard, we propose a novel cognitive keystroke authentication that could integrate in the general environment without additional equipment. The proposed system introduces a novel feature extraction algorithm as the cognitive fingerprint, so-called Subword. Our approach combine Subword Searching Algorithm with Weighted Support Vector Machine (WSVM) and Fusion Algorithm to discriminate between impostors and legitimate users with a high success rate. This scheme will continuously monitor the typing behavior of a user and will determine if the current user is still the genuine one or not in the background. Large scale experiment with 800 participants at Iowa State University gives evidence that our approach is feasible in practice, in terms of ease of use, improved security, and performance. The experimental results show that our system can achieve 1.4 percent Equal Error Rate (EER), which demonstrates the system\u27s effectiveness as a new authentication mechanism. Our study define a new feature extraction approach in keystroke dynamics, and we hope our work will inspire researchers looking for another good feature for authentication in keystroke dynamics

    Touchalytics: On the Applicability of Touchscreen Input as a Behavioral Biometric for Continuous Authentication

    Full text link
    We investigate whether a classifier can continuously authenticate users based on the way they interact with the touchscreen of a smart phone. We propose a set of 30 behavioral touch features that can be extracted from raw touchscreen logs and demonstrate that different users populate distinct subspaces of this feature space. In a systematic experiment designed to test how this behavioral pattern exhibits consistency over time, we collected touch data from users interacting with a smart phone using basic navigation maneuvers, i.e., up-down and left-right scrolling. We propose a classification framework that learns the touch behavior of a user during an enrollment phase and is able to accept or reject the current user by monitoring interaction with the touch screen. The classifier achieves a median equal error rate of 0% for intra-session authentication, 2%-3% for inter-session authentication and below 4% when the authentication test was carried out one week after the enrollment phase. While our experimental findings disqualify this method as a standalone authentication mechanism for long-term authentication, it could be implemented as a means to extend screen-lock time or as a part of a multi-modal biometric authentication system.Comment: to appear at IEEE Transactions on Information Forensics & Security; Download data from http://www.mariofrank.net/touchalytics
    • …
    corecore