535 research outputs found

    Deep generative models for network data synthesis and monitoring

    Get PDF
    Measurement and monitoring are fundamental tasks in all networks, enabling the down-stream management and optimization of the network. Although networks inherently have abundant amounts of monitoring data, its access and effective measurement is another story. The challenges exist in many aspects. First, the inaccessibility of network monitoring data for external users, and it is hard to provide a high-fidelity dataset without leaking commercial sensitive information. Second, it could be very expensive to carry out effective data collection to cover a large-scale network system, considering the size of network growing, i.e., cell number of radio network and the number of flows in the Internet Service Provider (ISP) network. Third, it is difficult to ensure fidelity and efficiency simultaneously in network monitoring, as the available resources in the network element that can be applied to support the measurement function are too limited to implement sophisticated mechanisms. Finally, understanding and explaining the behavior of the network becomes challenging due to its size and complex structure. Various emerging optimization-based solutions (e.g., compressive sensing) or data-driven solutions (e.g. deep learning) have been proposed for the aforementioned challenges. However, the fidelity and efficiency of existing methods cannot yet meet the current network requirements. The contributions made in this thesis significantly advance the state of the art in the domain of network measurement and monitoring techniques. Overall, we leverage cutting-edge machine learning technology, deep generative modeling, throughout the entire thesis. First, we design and realize APPSHOT , an efficient city-scale network traffic sharing with a conditional generative model, which only requires open-source contextual data during inference (e.g., land use information and population distribution). Second, we develop an efficient drive testing system — GENDT, based on generative model, which combines graph neural networks, conditional generation, and quantified model uncertainty to enhance the efficiency of mobile drive testing. Third, we design and implement DISTILGAN, a high-fidelity, efficient, versatile, and real-time network telemetry system with latent GANs and spectral-temporal networks. Finally, we propose SPOTLIGHT , an accurate, explainable, and efficient anomaly detection system of the Open RAN (Radio Access Network) system. The lessons learned through this research are summarized, and interesting topics are discussed for future work in this domain. All proposed solutions have been evaluated with real-world datasets and applied to support different applications in real systems

    CANCER TREATMENT BY TARGETING HDAC4 TRANSLOCATION INDUCED BY MICROSECOND PULSED ELECTRIC FIELD EXPOSURE: MECHANISTIC INSIGHTS THROUGH KINASES AND PHOSPHATASES

    Get PDF
    Epigenetic modifications, arising from sub-cellular shifts in histone deacetylase (HDAC) activity and localization, present promising strategies for diverse cancer treatments. HDACs, enzymes responsible for post-translational histone modifications, induce these epigenetic changes by removing acetyl groups from ε-N-acetyl-lysine residues on histones, thereby suppressing gene transcription. Within the HDAC group, class IIa HDACs are notable for their responsiveness to extracellular signals, bridging the gap between external stimuli, plasma membrane, and genome through nuclear-cytoplasmic translocation. This localization offers two significant mechanisms for cancer treatment: nuclear accumulation of HDACs represses oncogenic transcription factors, such as myocyte-specific enhancer factor 2C (MEF2C), triggering various cell death pathways. Conversely, cytoplasmic HDAC accumulation acts similarly to HDAC inhibitors by silencing genes. My dissertation introduces an innovative approach for glioblastoma and breast cancer treatment by investigating the application of microsecond pulsed electric fields. It particularly focuses on HDAC4, a class IIa HDAC overexpressed in these cancers. Beyond demonstrating HDAC4 translocation, my research delves into the intricate roles of kinases and phosphatases, shedding light on the underlying factors governing HDAC4 translocation

    Cognitive Decay And Memory Recall During Long Duration Spaceflight

    Get PDF
    This dissertation aims to advance the efficacy of Long-Duration Space Flight (LDSF) pre-flight and in-flight training programs, acknowledging existing knowledge gaps in NASA\u27s methodologies. The research\u27s objective is to optimize the cognitive workload of LDSF crew members, enhance their neurocognitive functionality, and provide more meaningful work experiences, particularly for Mars missions.The study addresses identified shortcomings in current training and learning strategies and simulation-based training systems, focusing on areas requiring quantitative measures for astronaut proficiency and training effectiveness assessment. The project centers on understanding cognitive decay and memory loss under LDSF-related stressors, seeking to establish when such cognitive decline exceeds acceptable performance levels throughout mission phases. The research acknowledges the limitations of creating a near-orbit environment due to resource constraints and the need to develop engaging tasks for test subjects. Nevertheless, it underscores the potential impact on future space mission training and other high-risk professions. The study further explores astronaut training complexities, the challenges encountered in LDSF missions, and the cognitive processes involved in such demanding environments. The research employs various cognitive and memory testing events, integrating neuroimaging techniques to understand cognition\u27s neural mechanisms and memory. It also explores Rasmussen\u27s S-R-K behaviors and Brain Network Theory’s (BNT) potential for measuring forgetting, cognition, and predicting training needs. The multidisciplinary approach of the study reinforces the importance of integrating insights from cognitive psychology, behavior analysis, and brain connectivity research. Research experiments were conducted at the University of North Dakota\u27s Integrated Lunar Mars Analog Habitat (ILMAH), gathering data from selected subjects via cognitive neuroscience tools and Electroencephalography (EEG) recordings to evaluate neurocognitive performance. The data analysis aimed to assess brain network activations during mentally demanding activities and compare EEG power spectra across various frequencies, latencies, and scalp locations. Despite facing certain challenges, including inadequacies of the current adapter boards leading to analysis failure, the study provides crucial lessons for future research endeavors. It highlights the need for swift adaptation, continual process refinement, and innovative solutions, like the redesign of adapter boards for high radio frequency noise environments, for the collection of high-quality EEG data. In conclusion, while the research did not reveal statistically significant differences between the experimental and control groups, it furnished valuable insights and underscored the need to optimize astronaut performance, well-being, and mission success. The study contributes to the ongoing evolution of training methodologies, with implications for future space exploration endeavors

    Developmental Bootstrapping of AIs

    Full text link
    Although some current AIs surpass human abilities in closed artificial worlds such as board games, their abilities in the real world are limited. They make strange mistakes and do not notice them. They cannot be instructed easily, fail to use common sense, and lack curiosity. They do not make good collaborators. Mainstream approaches for creating AIs are the traditional manually-constructed symbolic AI approach and generative and deep learning AI approaches including large language models (LLMs). These systems are not well suited for creating robust and trustworthy AIs. Although it is outside of the mainstream, the developmental bootstrapping approach has more potential. In developmental bootstrapping, AIs develop competences like human children do. They start with innate competences. They interact with the environment and learn from their interactions. They incrementally extend their innate competences with self-developed competences. They interact and learn from people and establish perceptual, cognitive, and common grounding. They acquire the competences they need through bootstrapping. However, developmental robotics has not yet produced AIs with robust adult-level competences. Projects have typically stopped at the Toddler Barrier corresponding to human infant development at about two years of age, before their speech is fluent. They also do not bridge the Reading Barrier, to skillfully and skeptically draw on the socially developed information resources that power current LLMs. The next competences in human cognitive development involve intrinsic motivation, imitation learning, imagination, coordination, and communication. This position paper lays out the logic, prospects, gaps, and challenges for extending the practice of developmental bootstrapping to acquire further competences and create robust, resilient, and human-compatible AIs.Comment: 102 pages, 29 figure

    Contributions to time series analysis, modelling and forecasting to increase reliability in industrial environments.

    Get PDF
    356 p.La integración del Internet of Things en el sector industrial es clave para alcanzar la inteligencia empresarial. Este estudio se enfoca en mejorar o proponer nuevos enfoques para aumentar la confiabilidad de las soluciones de IA basadas en datos de series temporales en la industria. Se abordan tres fases: mejora de la calidad de los datos, modelos y errores. Se propone una definición estándar de métricas de calidad y se incluyen en el paquete dqts de R. Se exploran los pasos del modelado de series temporales, desde la extracción de características hasta la elección y aplicación del modelo de predicción más eficiente. El método KNPTS, basado en la búsqueda de patrones en el histórico, se presenta como un paquete de R para estimar datos futuros. Además, se sugiere el uso de medidas elásticas de similitud para evaluar modelos de regresión y la importancia de métricas adecuadas en problemas de clases desbalanceadas. Las contribuciones se validaron en casos de uso industrial de diferentes campos: calidad de producto, previsión de consumo eléctrico, detección de porosidad y diagnóstico de máquinas

    Security Analysis: A Critical Thinking Approach

    Get PDF
    Security Analysis: A Critical-Thinking Approach is for anyone desiring to learn techniques for generating the best answers to complex questions and best solutions to complex problems. It furnishes current and future analysts in national security, homeland security, law enforcement, and corporate security an alternative, comprehensive process for conducting both intelligence analysis and policy analysis. The target audience is upper-division undergraduate students and new graduate students, along with entry-level practitioner trainees. The book centers on a Security Analysis Critical-Thinking Framework that synthesizes critical-thinking and existing analytic techniques. Ample examples are provided to assist readers in comprehending the material. Newly created material includes techniques for analyzing beliefs and political cultures. The book also functions as an introduction to Foreign Policy and Security Studies.https://encompass.eku.edu/ekuopen/1005/thumbnail.jp

    Evaluating Adversarial Robustness of Detection-based Defenses against Adversarial Examples

    Get PDF
    Machine Learning algorithms provide astonishing performance in a wide range of tasks, including sensitive and critical applications. On the other hand, it has been shown that they are vulnerable to adversarial attacks, a set of techniques that violate the integrity, confidentiality, or availability of such systems. In particular, one of the most studied phenomena concerns adversarial examples, i.e., input samples that are carefully manipulated to alter the model output. In the last decade, the research community put a strong effort into this field, proposing new evasion attacks and methods to defend against them. With this thesis, we propose different approaches that can be applied to Deep Neural Networks to detect and reject adversarial examples that present an anomalous distribution with respect to training data. The first leverages the domain knowledge of the relationships among the considered classes integrated through a framework in which first-order logic knowledge is converted into constraints and injected into a semi-supervised learning problem. Within this setting, the classifier is able to reject samples that violate the domain knowledge constraints. This approach can be applied in both single and multi-label classification settings. The second one is based on a Deep Neural Rejection (DNR) mechanism to detect adversarial examples, based on the idea of rejecting samples that exhibit anomalous feature representations at different network layers. To this end, we exploit RBF SVM classifiers, which provide decreasing confidence values as samples move away from the training data distribution. Despite technical differences, this approach shares a common backbone structure with other proposed methods that we formalize in a unifying framework. As all of them require comparing input samples against an oversized number of reference prototypes, possibly at different representation layers, they suffer from the same drawback, i.e., high computational overhead and memory usage, that makes these approaches unusable in real applications. To overcome this limitation, we introduce FADER (Fast Adversarial Example Rejection), a technique for speeding up detection-based methods by employing RBF networks as detectors: by fixing the number of required prototypes, their runtime complexity can be controlled. All proposed methods are evaluated in both black-box and white-box settings, i.e., against an attacker unaware of the defense mechanism, and against an attacker who knows the defense and adapts the attack algorithm to bypass it, respectively. Our experimental evaluation shows that the proposed methods increase the robustness of the defended models and help detect adversarial examples effectively, especially when the attacker does not know the underlying detection system

    COUNTERING SMALL UNMANNED AIRCRAFT SYSTEMS WITH ADVANCED DATA ANALYSIS AND MACHINE LEARNING

    Get PDF
    In January 2021, the DOD released its first Counter-Small Unmanned Aircraft Systems Strategy to address the growing risk to military personnel, facilities, and assets posed by the rapid technological advancement and proliferation of sUAS. Existing counter-drone capabilities—heavily reliant on electronic warfare to disrupt the communication link between user and device—no longer address an evolving threat that includes autonomous drones, COTS technology, and an increasing number of drones in the airspace that can overwhelm a C-sUAS operator. To counter the increasingly complex small drone threat, the Army-led Joint Counter-sUAS Office is pursuing materiel and non-materiel solutions for its new system-of-systems approach. One vexing C-sUAS challenge involves radar detection systems discriminating some sUAS from other flying objects, like birds, due to their comparable size, slow movement, and low altitude. Inaccurate or inefficient sUAS classification using radar data can be a force protection threat due to the limited number of electro-optical sensors and human operators for classification at-scale. This thesis uses bird and drone radar track data from two different training environments to explore hidden structure in the data, develop independent unsupervised and supervised learning models using the two datasets, and experiment with data sampling and feature engineering to improve upon model robustness to different environments and dynamic environmental conditions.Lieutenant Colonel, United States ArmyApproved for public release. Distribution is unlimited
    • …
    corecore