49 research outputs found

    PRISMA: PRoximal Iterative SMoothing Algorithm

    Full text link
    Motivated by learning problems including max-norm regularized matrix completion and clustering, robust PCA and sparse inverse covariance selection, we propose a novel optimization algorithm for minimizing a convex objective which decomposes into three parts: a smooth part, a simple non-smooth Lipschitz part, and a simple non-smooth non-Lipschitz part. We use a time variant smoothing strategy that allows us to obtain a guarantee that does not depend on knowing in advance the total number of iterations nor a bound on the domain

    Sparse Inverse Covariance Selection via Alternating Linearization Methods

    Full text link
    Gaussian graphical models are of great interest in statistical learning. Because the conditional independencies between different nodes correspond to zero entries in the inverse covariance matrix of the Gaussian distribution, one can learn the structure of the graph by estimating a sparse inverse covariance matrix from sample data, by solving a convex maximum likelihood problem with an ℓ1\ell_1-regularization term. In this paper, we propose a first-order method based on an alternating linearization technique that exploits the problem's special structure; in particular, the subproblems solved in each iteration have closed-form solutions. Moreover, our algorithm obtains an ϵ\epsilon-optimal solution in O(1/ϵ)O(1/\epsilon) iterations. Numerical experiments on both synthetic and real data from gene association networks show that a practical version of this algorithm outperforms other competitive algorithms

    Adaptive Relaxed ADMM: Convergence Theory and Practical Implementation

    Full text link
    Many modern computer vision and machine learning applications rely on solving difficult optimization problems that involve non-differentiable objective functions and constraints. The alternating direction method of multipliers (ADMM) is a widely used approach to solve such problems. Relaxed ADMM is a generalization of ADMM that often achieves better performance, but its efficiency depends strongly on algorithm parameters that must be chosen by an expert user. We propose an adaptive method that automatically tunes the key algorithm parameters to achieve optimal performance without user oversight. Inspired by recent work on adaptivity, the proposed adaptive relaxed ADMM (ARADMM) is derived by assuming a Barzilai-Borwein style linear gradient. A detailed convergence analysis of ARADMM is provided, and numerical results on several applications demonstrate fast practical convergence.Comment: CVPR 201

    Accelerated Linearized Bregman Method

    Full text link
    In this paper, we propose and analyze an accelerated linearized Bregman (ALB) method for solving the basis pursuit and related sparse optimization problems. This accelerated algorithm is based on the fact that the linearized Bregman (LB) algorithm is equivalent to a gradient descent method applied to a certain dual formulation. We show that the LB method requires O(1/ϵ)O(1/\epsilon) iterations to obtain an ϵ\epsilon-optimal solution and the ALB algorithm reduces this iteration complexity to O(1/ϵ)O(1/\sqrt{\epsilon}) while requiring almost the same computational effort on each iteration. Numerical results on compressed sensing and matrix completion problems are presented that demonstrate that the ALB method can be significantly faster than the LB method

    Alternating Direction Methods for Latent Variable Gaussian Graphical Model Selection

    Full text link
    Chandrasekaran, Parrilo and Willsky (2010) proposed a convex optimization problem to characterize graphical model selection in the presence of unobserved variables. This convex optimization problem aims to estimate an inverse covariance matrix that can be decomposed into a sparse matrix minus a low-rank matrix from sample data. Solving this convex optimization problem is very challenging, especially for large problems. In this paper, we propose two alternating direction methods for solving this problem. The first method is to apply the classical alternating direction method of multipliers to solve the problem as a consensus problem. The second method is a proximal gradient based alternating direction method of multipliers. Our methods exploit and take advantage of the special structure of the problem and thus can solve large problems very efficiently. Global convergence result is established for the proposed methods. Numerical results on both synthetic data and gene expression data show that our methods usually solve problems with one million variables in one to two minutes, and are usually five to thirty five times faster than a state-of-the-art Newton-CG proximal point algorithm
    corecore