17,824 research outputs found

    Autonomous Algorithms for Centralized and Distributed Interference Coordination: A Virtual Layer Based Approach

    Get PDF
    Interference mitigation techniques are essential for improving the performance of interference limited wireless networks. In this paper, we introduce novel interference mitigation schemes for wireless cellular networks with space division multiple access (SDMA). The schemes are based on a virtual layer that captures and simplifies the complicated interference situation in the network and that is used for power control. We show how optimization in this virtual layer generates gradually adapting power control settings that lead to autonomous interference minimization. Thereby, the granularity of control ranges from controlling frequency sub-band power via controlling the power on a per-beam basis, to a granularity of only enforcing average power constraints per beam. In conjunction with suitable short-term scheduling, our algorithms gradually steer the network towards a higher utility. We use extensive system-level simulations to compare three distributed algorithms and evaluate their applicability for different user mobility assumptions. In particular, it turns out that larger gains can be achieved by imposing average power constraints and allowing opportunistic scheduling instantaneously, rather than controlling the power in a strict way. Furthermore, we introduce a centralized algorithm, which directly solves the underlying optimization and shows fast convergence, as a performance benchmark for the distributed solutions. Moreover, we investigate the deviation from global optimality by comparing to a branch-and-bound-based solution.Comment: revised versio

    Power control for predictable communication reliability in wireless cyber-physical systems

    Get PDF
    Wireless networks are being applied in various cyber-physical systems and posed to support mission-critical cyber-physical systems applications. When those applications require reliable and low-latency wireless communication, ensuring predictable per-packet communication reliability is a basis. Due to co-channel interference and wireless channel dynamics (e.g. multi-path fading), however, wireless communication is inherently dynamic and subject to complex uncertainties. Power control and MAC-layer scheduling are two enablers. In this dissertation, cross-layer optimization of joint power control and scheduling for ensuring predictable reliability has been studied. With an emphasis on distributed approaches, we propose a general framework and additionally a distributed algorithm in static networks to address small channel variations and satisfy the requirements on receiver-side signal-to-interference-plus-noise-ratio (SINR). Moreover, toward addressing reliability in the settings of large-scale channel dynamics, we conduct an analysis of the strategy of joint scheduling and power control and demonstrate the challenges. First, a general framework for distributed power control is considered. Given a set of links subject to co-channel interference and channel dynamics, the goal is to adjust each link\u27s transmission power on-the-fly so that all the links\u27 instantaneous packet delivery ratio requirements can be satised. By adopting the SINR high-delity model, this problem can be formulated as a Linear Programming problem. Furthermore, Perron-Frobenius theory indicates the characteristic of infeasibility, which means that not all links can nd a transmission power to meet all the SINR requirements. This nding provides a theoretical foundation for the Physical-Ratio-K (PRK) model. We build our framework based on the PRK model and NAMA scheduling. In the proposed framework, we dene the optimal K as a measurement for feasibility. Transmission power and scheduling will be adjusted by K and achieve near-optimal performance in terms of reliability and concurrency. Second, we propose a distributed power control and scheduling algorithm for mission-critical Internet-of-Things (IoT) communications. Existing solutions are mostly based on heuristic algorithms or asymptotic analysis of network performance, and there lack eld-deployable algorithms for ensuring predictable communication reliability. When IoT systems are mostly static or low mobility, we model the wireless channel with small channel variations. For this setting, our approach adopts the framework mentioned above and employs feedback control for online K adaptation and transmission power update. At each time instant, each sender will run NAMA scheduling to determine if it can obtain channel access or not. When each sender gets the channel access and sends a packet, its receiver will measure the current SINR and calculate the scheduling K and transmission power for the next time slot according to current K, transmission power and SINR. This adaptive distributed approach has demonstrated a signicant improvement compared to state-of-the-art technique. The proposed algorithm is expected to serve as a foundation for distributed scheduling and power control as the penetration of IoT applications expands to levels at which both the network capacity and communication reliability become critical. Finally, we address the challenges of power control and scheduling in the presence of large-scale channel dynamics. Distributed approaches generally require time to converge, and this becomes a major issue in large-scale dynamics where channel may change faster than the convergence time of algorithms. We dene the cumulative interference factor as a measurement of impact of a single link\u27s interference. We examine the characteristic of the interference matrix and propose that scheduling with close-by links silent will be still an ecient way of constructing a set of links whose required reliability is feasible with proper transmission power control even in the situation of large-scale channel dynamics. Given that scheduling alone is unable to ensure predictable communication reliability while ensuring high throughput and addressing fast-varying channel dynamics, we demonstrate how power control can help improve both reliability at each time instant and throughput in the long-term. Collectively, these ndings provide insight into the cross-layer design of joint scheduling and power control for ensuring predictable per-packet reliability in the presence of wireless network dynamics and uncertainties

    A Tutorial on Clique Problems in Communications and Signal Processing

    Full text link
    Since its first use by Euler on the problem of the seven bridges of K\"onigsberg, graph theory has shown excellent abilities in solving and unveiling the properties of multiple discrete optimization problems. The study of the structure of some integer programs reveals equivalence with graph theory problems making a large body of the literature readily available for solving and characterizing the complexity of these problems. This tutorial presents a framework for utilizing a particular graph theory problem, known as the clique problem, for solving communications and signal processing problems. In particular, the paper aims to illustrate the structural properties of integer programs that can be formulated as clique problems through multiple examples in communications and signal processing. To that end, the first part of the tutorial provides various optimal and heuristic solutions for the maximum clique, maximum weight clique, and kk-clique problems. The tutorial, further, illustrates the use of the clique formulation through numerous contemporary examples in communications and signal processing, mainly in maximum access for non-orthogonal multiple access networks, throughput maximization using index and instantly decodable network coding, collision-free radio frequency identification networks, and resource allocation in cloud-radio access networks. Finally, the tutorial sheds light on the recent advances of such applications, and provides technical insights on ways of dealing with mixed discrete-continuous optimization problems
    corecore