12,536 research outputs found

    Exploiting Image Local And Nonlocal Consistency For Mixed Gaussian-Impulse Noise Removal

    Full text link
    Most existing image denoising algorithms can only deal with a single type of noise, which violates the fact that the noisy observed images in practice are often suffered from more than one type of noise during the process of acquisition and transmission. In this paper, we propose a new variational algorithm for mixed Gaussian-impulse noise removal by exploiting image local consistency and nonlocal consistency simultaneously. Specifically, the local consistency is measured by a hyper-Laplace prior, enforcing the local smoothness of images, while the nonlocal consistency is measured by three-dimensional sparsity of similar blocks, enforcing the nonlocal self-similarity of natural images. Moreover, a Split-Bregman based technique is developed to solve the above optimization problem efficiently. Extensive experiments for mixed Gaussian plus impulse noise show that significant performance improvements over the current state-of-the-art schemes have been achieved, which substantiates the effectiveness of the proposed algorithm.Comment: 6 pages, 4 figures, 3 tables, to be published at IEEE Int. Conf. on Multimedia & Expo (ICME) 201

    A Primal-Dual Proximal Algorithm for Sparse Template-Based Adaptive Filtering: Application to Seismic Multiple Removal

    Get PDF
    Unveiling meaningful geophysical information from seismic data requires to deal with both random and structured "noises". As their amplitude may be greater than signals of interest (primaries), additional prior information is especially important in performing efficient signal separation. We address here the problem of multiple reflections, caused by wave-field bouncing between layers. Since only approximate models of these phenomena are available, we propose a flexible framework for time-varying adaptive filtering of seismic signals, using sparse representations, based on inaccurate templates. We recast the joint estimation of adaptive filters and primaries in a new convex variational formulation. This approach allows us to incorporate plausible knowledge about noise statistics, data sparsity and slow filter variation in parsimony-promoting wavelet frames. The designed primal-dual algorithm solves a constrained minimization problem that alleviates standard regularization issues in finding hyperparameters. The approach demonstrates significantly good performance in low signal-to-noise ratio conditions, both for simulated and real field seismic data

    Partition based vector filtering technique for suppression of noise in digital color images

    Get PDF
    A partition-based adaptive vector filter is proposed for the restoration of corrupted digital color images. The novelty of the filter lies in its unique three-stage adaptive estimation. The local image structure is first estimated by a series of center-weighted reference filters. Then the distances between the observed central pixel and estimated references are utilized to classify the local inputs into one of preset structure partition cells. Finally, a weighted filtering operation, indexed by the partition cell, is applied to the estimated references in order to restore the central pixel value. The weighted filtering operation is optimized off-line for each partition cell to achieve the best tradeoff between noise suppression and structure preservation. Recursive filtering operation and recursive weight training are also investigated to further boost the restoration performance. The proposed filter has demonstrated satisfactory results in suppressing many distinct types of noise in natural color images. Noticeable performance gains are demonstrated over other prior-art methods in terms of standard objective measurements, the visual image quality and the computational complexity
    corecore