79 research outputs found

    State of charge estimation based on a realtime battery model and iterative smooth variable structure filter

    Get PDF
    State of charge estimation based on a realtime battery model and iterative smooth variable structure filter Kim, T.; Wang, Y.; Sahinoglu, Z.; Wada, T.; Hara, S.; Qiao, W TR2014-041 May 2014 Abstract This paper proposes a novel real-time model-based state of charge (SOC) estimation method for lithium-ion batteries. The proposed method includes: 1) an electrical circuit battery model incorporating the hysteresis effect, 2) a fast upper-triangular and D-diagonal recursive least square (FUDRLS)-based online parameter identification algorithm for the electrical battery model, and 3) an iterated smooth variable structure filter (ISVSF) for SOC estimation. The proposed method enables an accurate and robust condition monitoring for lithium-ion batteries. Due to its low complexity, the proposed method is suitable for the real-time embedded battery management system (BMS) application. Simulation and experiment are performed to validate the proposed method for a polymer lithium-ion cell. IEEE PES Innovative Smart Grid Technologies Conference -Asia (ISGT Asia) This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved

    Online modelling and state-of-charge estimation for lithium-titanate battery

    Get PDF
    Superior safety, is a promising energy storage element for electric vehicles. Its features can be fully utilised by using a fast charger and a high performance battery management system. Battery model is vital to a battery charger design for characterising the charging behaviours of a battery. Additionally, a robust state-ofcharge (SoC) estimation should be realised for a reliable battery management. This thesis develops a battery model for charger design and a robust method for SoC estimation by using MATLAB. The thesis proposed a transfer function-based battery model which is applicable for small-signal analysis and large-signal simulation of battery charger design, in order to capture the charging profiles of LTO battery. Busse’s adaptive rule, which has simple computations, is applied to improve the accuracy of Kalman filter-based SoC estimation. Busse’s adaptive Kalman filters are also applied for SoC estimation with online battery modelling to eliminate the complicated process of battery modelling. This study was conducted by using 2.4 V, 15 Ah LTO batteries. The batteries were tested with continuous current test and pulsed current test at several ambient temperatures (-25 ÂșC, 0 ÂșC, 25 ÂșC and 50 ÂșC) and charge/discharge currents (0.5 C, 1 C, 2 C). Additionally, modified dynamic stress tests at several temperatures (-15 ÂșC, 0 ÂșC, 15 ÂșC, 25 ÂșC, 35 ÂșC and 50 ÂșC) were also performed to test the battery under real EV environment. Results of the battery modelling showed that the developed transfer function-based battery model is accurate where the root-mean-square modelling error is less than 30 mV. The results also revealed that the Busse’s adaptive rule has effectively improved the Kalman filter-based SoC estimation for the case of offline battery model by giving a higher accuracy and shorter convergence time. Additionally, Busse’s adaptive Extended Kalman Filter gave a better accuracy in SoC estimation with online battery modelling. The proposed transfer function-based battery model provides a helpful solution for the battery charger design while the proposed Busse’s adaptive Kalman filter offers an accurate and robust SoC estimation for both offline and online battery models

    Implementazione su FPGA di un algoritmo per la stima online dello stato di batterie al litio

    Get PDF
    Nell'elaborato viene descritto inizialmente lo stato dell'arte nel campo dei circuiti di monitoraggio (BMS) e degli algoritmi piĂč diffusi per la stima dello stato delle batterie al litio. Successivamente, viene presentato un algoritmo che ne stima lo stato di carica e viene descritta la sua implementazione su FPGA, realizzata grazie ad un flusso di progetto alternativo
    • 

    corecore