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ABSTRACT  
 
 
 

Lithium-titanate (LTO) battery, which has features of fast charging and 
superior safety, is a promising energy storage element for electric vehicles.  Its 
features can be fully utilised by using a fast charger and a high performance battery 
management system.  Battery model is vital to a battery charger design for 
characterising the charging behaviours of a battery.  Additionally, a robust state-of-
charge (SoC) estimation should be realised for a reliable battery management.  This 
thesis develops a battery model for charger design and a robust method for SoC 
estimation by using MATLAB.  The thesis proposed a transfer function-based 
battery model which is applicable for small-signal analysis and large-signal 
simulation of battery charger design, in order to capture the charging profiles of LTO 
battery.  Busse’s adaptive rule, which has simple computations, is applied to improve 
the accuracy of Kalman filter-based SoC estimation.  Busse’s adaptive Kalman filters 
are also applied for SoC estimation with online battery modelling to eliminate the 
complicated process of battery modelling.  This study was conducted by using 2.4 V, 
15 Ah LTO batteries.  The batteries were tested with continuous current test and 
pulsed current test at several ambient temperatures (-25 ºC, 0 ºC, 25 ºC and 50 ºC) 
and charge/discharge currents (0.5 C, 1 C, 2 C).  Additionally, modified dynamic 
stress tests at several temperatures (-15 ºC, 0 ºC, 15 ºC, 25 ºC, 35 ºC and 50 ºC) were 
also performed to test the battery under real EV environment. Results of the battery 
modelling showed that the developed transfer function-based battery model is 
accurate where the root-mean-square modelling error is less than 30 mV.  The results 
also revealed that the Busse’s adaptive rule has effectively improved the Kalman 
filter-based SoC estimation for the case of offline battery model by giving a higher 
accuracy and shorter convergence time.  Additionally, Busse’s adaptive Extended 
Kalman Filter gave a better accuracy in SoC estimation with online battery 
modelling.  The proposed transfer function-based battery model provides a helpful 
solution for the battery charger design while the proposed Busse’s adaptive Kalman 
filter offers an accurate and robust SoC estimation for both offline and online battery 
models. 
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ABSTRAK 
 
 
 
 Bateri lithium titanat (LTO) yang mempunyai ciri-ciri pengecasan yang cepat 
dan keselamatan yang unggul merupakan elemen penyimpanan tenaga yang amat 
diyakini untuk kenderaan elektrik.  Ciri-cirinya boleh digunakan sepenuhnya dengan 
merealisasikan pengecas bateri yang pantas dan sistem pengurusan bateri berprestasi 
tinggi.  Model bateri adalah penting untuk merekabentuk pengecas bateri bagi 
menentukan tindakbalas bateri ketika dicas.  Selain itu, kaedah anggaran keadaan cas 
(SoC) yang tepat perlu direalisasikan untuk sistem pengurusan bateri.  Tesis ini 
membangunkan model bateri untuk kegunaan reka bentuk pengecas bateri dan juga 
kaedah anggaran keadaan caj bateri yang mantap menggunakan simulator MATLAB.  
Dalam tesis ini, model bateri yang berasaskan fungsi pemindahan serta sesuai untuk 
analisis isyarat kecil dan simulasi isyarat besar dalam merekabentuk pengecas bateri 
telah dibangunkan bagi mencirikan profil pengecasan bateri LTO.  Peraturan 
penyesuaian Busse yang mempunyai pengiraan mudah telah digunakan untuk 
meningkatkan ketepatan penapis Kalman dalam anggaran keadaan caj bateri.  Selain 
itu, penapis Kalman menggunakan peraturan penyesuaian Busse ini juga digunapakai 
untuk anggaran keadaan caj bateri dan model bateri secara talian untuk 
menghapuskan proses yang rumit dalam pemodelan bateri.  Kajian ini telah 
dijalankan dengan menggunakan 2.4 V, 15 Ah bateri LTO.  Bateri-bateri ini telah 
diuji dengan ujian arus berterusan dan ujian arus berdenyut pada beberapa suhu 
ambien (-25 º C, 0 ºC, 25 ºC dan 50 ºC) dan arus berlainan (0.5 C, 1 C, 2 C).  Selain 
itu, ujian tekanan dinamik yang telah diubah suai juga dijalankan pada beberapa suhu 
persekitaran (-15 ºC, 0 ºC, 15 ºC, 25 ºC, 35 ºC dan 50 ºC) untuk mengujikan bateri 
dalam persekitaran EV yang sebenar.  Keputusan pemodelan bateri menunjukkan 
bahawa model bateri berasaskan fungsi pemindahan yang telah dibangunkan adalah 
jitu, di mana ralat punca min kuasa dua untuk pemodelan adalah kurang daripada 30 
mV.  Selain itu, keputusan mendedahkan bahawa peraturan penyesuaian Busse telah 
meningkatkan prestasi penapis Kalman dalam anggaran keadaan caj bagi kes model 
bateri luar talian dengan memberikan ketepatan yang lebih tinggi dan masa 
penumpuan yang lebih singkat.  Selain itu, penapis Kalman lanjutan yang 
menggunakan peraturan penyesuaian Busse ini juga memberi ketepatan yang baik 
dalam anggaran keadaan caj dan model bateri secara dalam talian.  Model bateri 
yang berasaskan fungsi pemindahan telah menyediakan penyelesaian yang berguna 
untuk reka pengecas bateri manakala penapis Kalman yang menggunakan peraturan 
penyesuaian Busse telah menawarkan anggaran keadaan caj bateri yang jitu dan 
mantap bagi kedua-dua model bateri luar talian dan dalam talian. 
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CHAPTER 1  
 
 
 

INTRODUCTION  
 
 
 

1.1 Background 
 

Fossil fuels, such as oil, coal and natural gas, are the main resources for the world’s 
energy supply.  However, the usage of fossil fuels leads to the emission of greenhouse gas 
that contributes to global climate change.  One of the efforts to reduce greenhouse gas 
emissions is the transformation of energy technology in the transportation sector.  According 
to International Energy Agency (IEA), this transformation can be realized by implementing 
electric vehicles (EVs) and hybrid electric vehicles (HEVs) [1].  Through vehicle 
electrification, vehicles are powered by a rechargeable energy storage system and enabled by 
an electric motor, thus providing the means for a clean and efficient roadside transportation 
system.  Electric vehicles are expected to aggressively penetrate the market of roadside 
transportation in the near future, where the sales for both EVs and HEVs are expected to reach 
50 million by 2050 [1]. 

 
In order to compete with the existing transportation market, attention should be given 

to the energy storage element of EVs.  Generally, energy density (Wh/L) and specific energy 
(Wh/kg) are the prime considerations for choosing the energy storage element for EVs.  High 
value of energy density and specific energy reduces the size and mass of the energy storage 
element and thus extends the travel range of EVs.  In addition, power density (W/L) and 
specific power (W/kg) are also important in determining the available power for EVs under 
various load demands and driving states.  Besides, safety also needs to be addressed for 
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selecting an energy storage element so that the extreme emission of gaseous substances or 
heat will not take place under normal operation [2].  Other criteria for selecting energy storage 
elements are efficiency, maintenance requirement, cost, and environmental friendliness [3]. 

 
Rechargeable batteries, fuel cells and super-capacitors, are the three potential 

candidates for the energy storage element of EVs.  The comparison of their power density and 
energy density is shown in Figure 1.1.  The diagram reveals that fuel cells have the highest 
value of energy density among the energy storage elements.  Therefore, fuel cells provide a 
longer travel mileage to the vehicle.  Today, several fuel cell electric vehicles (FCEVs) are 
available in the transportation market, such as Hyundai ix35, Honda FCX Clarity and Toyota 
Mirai.  Theoretically, the electrical energy of a fuel cell is generated by using oxygen from the 
air and compressed hydrogen through a direct electrochemical reaction without undergoing 
combustion.  The electrochemical process of fuel cells only produces heat and water, thus 
gives zero greenhouse gases emission [4].  Similar to the conventional internal combustion 
engine vehicles (ICEVs), FCEVs can be refilled with hydrogen within a very short period.  
However, due to the low density of hydrogen gas, the on-board hydrogen storage has become 
a challenging task [5]-[6].  With the same volume, gasoline can give 10 times more of energy 
than hydrogen gas [5].  Due to this reason, it is costly transporting hydrogen gas from the 
production site to the refill station.  Likewise, a large hydrogen tank is required in each FCEV 
for energy storage purpose [7].  In addition, a potential risk exists in the storage of hydrogen 
gas because it is highly flammable.  Presently, further development of an efficient hydrogen 
storage system is required to realise the application of FCEV [6].  

 
Super-capacitor is also potentially applied as the energy storage element for EVs due 

to its advantages in term of power capability, cycle life performance and charge-discharge 
efficiency [8].  However, it is also not suitable for application as the primary energy source 
for EVs due to its extremely low energy density (less than 10Wh/kg) and its high self-
discharge rate (i.e. 5% per day [9]).  Today, super-capacitors are applied together with 
batteries or fuel cells to form a hybrid energy storage system [10]–[19], where the advantages 
of the high power capability of super-capacitors and the high energy density of the batteries 
are combined to fulfil the power and energy demands of EVs.  In this context, the batteries are 
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operating in nearly steady state conditions whereas the super-capacitors are applied to supply 
transient power demands and peak loads of EVs [20].  

 
Compared to fuel cells and super-capacitors, rechargeable batteries are considered as 

the most appropriate choice as the primary energy storage element for EVs.  The technology 
of rechargeable batteries has been improved from lead acid batteries to nickel-metal hydride 
(NiMH) batteries, and then from NiMH batteries to lithium-ion (Li-ion) batteries.  However, 
the battery technology is often criticized due to its slow progression, and cannot keep up pace 
with the demands of current technology [21].  Currently, Li-ion battery is considered as the 
most promising energy storage element for EVs since it owns the highest specific energy 
(150Whkg-1) and the highest specific power (up to 5kWkg-1) compared to other batteries [22]-
[23].  Besides, Li-ion battery has no memory effect, long cycle life, and excellent discharge 
characteristics [24].  Today, Li-ion battery has been applied in several EVs, such as BYD E6, 
Tesla Motor, Nissan Leaf and Chevrolet Volt [25].  

 
 Despite the impressive advantages of Li-ion batteries, several issues are vital to be 

considered for the application of Li-ion batteries.  Firstly, the power density and energy 
density of Li-ion battery is much lower compared with the fuel of ICEVs.  As a result, a huge 
size of battery pack, which is formed by series and parallel connection of Li-ion cells, is 
applied to fulfil the energy and power demands of EVs.  Besides, the recharge time of Li-ion 
battery pack is relatively longer compared to the fuel refill time of ICEV.  Thirdly, Li-ion 
battery is chemically reactive and it is sensitive to its operating temperature and voltage.  Due 
to these reasons, the huge size of battery pack, the limited drive range, the lengthy battery 
recharge time and safety issue have become the main challenges for EV development.  The 
improvement of battery technology and the development of an efficient battery management 
system (BMS) are the two important aspects to realise a reliable EV. 
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Figure 1.1 Comparison between various energy storage elements in terms of power and 
energy density [26] 
 

1.1.1 Lithium-ion Battery Technology 
 

Over the years, scientists have been committed towards improving the technology of 
rechargeable batteries.  The rechargeable batteries have been improved from lead acid 
batteries to nickel-based batteries, and then from nickel-based batteries to Li-ion batteries.  
Currently, Li-ion battery is considered as the most promising type of rechargeable battery and 
it has penetrated the market of portable electronic devices. 

 
Theoretically, lithium is the lightest and most electropositive metal, thus owning 

remarkable characteristics for the design of energy storage element with high energy density 
and high specific energy.  However, lithium metal is highly reactive, and it is flammable 
when it reacts with water.  Therefore, the early developed Li-ion batteries, which used lithium 
metal as its cathode, suffered from its safety issues [24].  Generally, an external protection 
case is required for the earlier developed Li-ion battery in order to ensure its safety during 
usage.  This additional packaging not only increases the cost and weight of the battery, but 
also reduces the flexibility in design. 
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Today, the safety problems of Li-ion battery have been drastically reduced through the 

development of advanced materials for its construction.  Currently, instead of using lithium 
metal, lithium liberating compound is applied as cathode material and graphite is applied as 
anode.  Therefore, the operation of modern Li-ion battery is based on the intercalation of 
lithium ions (Li+).  In this aspect, Li+ is intercalated into the cathode in the discharge process 
and into the anode in the charge process through the electrolyte.  Furthermore, the 
construction of Li-ion battery has been improved with the invention of solid-state cell.  
Instead of using liquid electrolyte, solid-state cell uses the solid electrolyte in its cell 
construction.  Without the existence of liquid electrolyte, the solid-state cell is free from 
harmful chemical leakage, thus offering better safety without using heavy protective case.  
Besides, solid-state cell is flexible enough to be shaped into several shapes according to its 
usage [27], such as cylindrical, coin, prismatic and flat shapes as shown in Figure 1.2 [21] . 
 

 
(a)     (b) 

 
(c)     (d) 

Figure 1.2 Configurations of solid state cell: (a) cylindrical, (b) prismatic, (c) coin, and (d) 
thin and flat [21]  
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Several types of Li-ion battery have been developed by using different cathode or 
anode materials.  The Li-ion battery is named based on the main active material that gives its 
character.  Presently, there are six common types of Li-ion in the market, they are lithium 
cobalt-oxide (LiCoO2 or LCO), lithium manganese-oxide (LiMn2O4 or LMO), lithium nickel-
manganese-cobalt-oxide (LiNiMnCoO2 or NMC), lithium ferro phosphate (LiFePO4 or LFP), 
lithium nickel-cobalt-aluminium-oxide (LiNiCoAlO2 or NCA), and lithium-titanate 
(Li4Ti5O12 or LTO) batteries.  

 
LCO and LMO battery are the most popular Li-ion batteries in the market. They have 

been widely applied in several digital devices, such as cell phones, laptops and cameras.  LCO 
battery consists of cobalt-oxide cathode which offers a high specific energy [28].  However, 
its performance is limited by its poor thermal stability.  Moreover, the usage of cobalt brings 
toxic hazards to the environment [24] [29].  Compared to the LCO battery, LMO battery uses 
lithium manganese-oxide as its cathode, which has spinel structure and provides lower 
internal resistance, higher current handling capability and higher thermal stability.  
Additionally, manganese is cheaper and more environmentally friendly compared to cobalt 
[24].  However, the performance of LMO battery is limited by its short cycle life.  Besides, its 
energy density is 20% lower compared to LCO battery [29].  

 
The advantages of LCO and LMO battery have been combined in the NMC battery.  

NMC battery consists of cathode material that is formed by the combination of nickel, 
manganese and cobalt.  The ratio of nickel-manganese-cobalt is typically set as 1:1:1 [29].  
However, this ratio can be adjusted by NMC battery manufacturers in order to get the highest 
performance [24].  NMC not only improves the safety of LCO battery, but it is also less 
expensive than LCO battery.  Today, it is a preferred candidate for certain EV manufacturers 
and it has been applied in Nissan Leaf, Chevy Volt, and BMW i3.  

 
NCA battery, which uses the combination of nickel, cobalt and aluminium as its 

cathode, shares certain similarities with NMC battery.  Currently, NCA battery has been 
applied in Tesla Motor S-model due to its high specific energy, high specific power and long 
life span [29].  However, the stability of NCA battery is poorer than NMC battery and LMO 



7 
 

 
 

battery.  In this aspect, NCA battery has a lower onset temperature (150 ºC) for cathode 
decomposition, and thus it is less resistant to thermal abuse [2].  Due to this reason, the 
thermal management of NCA battery is vital.  For instance, Tesla has assembled the NCA 
batteries into a liquid-cooled battery pack with strong metal enclosure. 

 
LFP battery is a modern Li-ion battery which uses phosphate as its cathode.  It offers 

superior thermal and chemical stabilities, thus providing a better safety feature than other 
aforementioned batteries [24][29].  In this aspect, LFP battery has a greater capability to 
withstand over-voltage and short-circuit conditions.  Besides, it also provides several 
advantages in term of low internal resistance, high current rating and long cycle life [29].  As 
a trade-off of using phosphate cathode, it has a lower cell voltage and specific energy 
compared to LCO, LMO, NMC and NCA battery.  However, due to its excellent safety 
features, it has been applied in BYD E6.  

 
Apart from the development of cathode material, Li-ion has also improved in terms of 

anode material.  Instead of using graphite anode, LTO battery uses lithium titanium oxide 
(Li4Ti5O12) as its anode.  Fast charging is considered the most attractive feature of LTO 
battery.  The nano-particles of LTO increases the electrode-electrolyte contact area and 
reduces the diffusion distance for ions and electrons, thus reducing the polarisation resistance 
and allowing for fast charging [30]-[31].  Moreover, it has superior safety, long cycle life, 
excellent low-temperature performance, low toxicity and good thermal stability.  As a trade-
off, LTO has a lower cell voltage, and thus has a lower specific energy compared to other Li-
ion batteries.  Currently, it has a higher cost due to the limited production.  However, due to 
its fast charging capability, it has been applied in several EVs, such as Mitsubishi i-MiEV, 
Honda Fit EV.  The characteristics of these batteries are summarised in Table 1.1 [29][32]. 
 
 

 
 



 
 

 
 

Table 1.1 : Characteristics of lithium-ion batteries [32][29] 
 

LCO 
LMO 

NMC 
NCA 

LFP 
LTO 

Cathode 
LiCoO2  

LiMn2 O2  
LiNiMnCoO2 

LiNiCoAlO2 
LiFePO4  

Graphite 
Anode 

Graphite 
Graphite 

Graphite 
Graphite 

Graphite 
Li4 Ti5 O12  

Nominal voltage (V) 
3.6  

3.7  
3.6  

3.6  
3.2  

2.4  
Operating voltage (V) 

2.5 – 4.2 
2.5 – 4.2 

2.5 – 4.2 
3.0 – 4.2 

2.5 – 3.65 
1.5 – 2.75 

Operating Temperature (ºC) 
Charge: 
0 − 55  
Discharge: 
-20 − 55  

Charge: 
0 − 55  
Discharge: 
-20 − 55 

Charge: 
0 − 55  
Discharge: 
-20 − 55 

Charge: 
0 − 55  
Discharge: 
-20 − 55 

Charge: 
0 − 55  
Discharge: 
-20 − 55 

Charge: 
-30 − 55  
Discharge: 
-30 − 55 

Specific Energy(Wh/kg) 
150 – 200  

100 – 150 
150 – 220  

200 – 260  
90 – 120  

70 – 80  
Typical Charge rate (C) 

0.7 – 1.0 
0.7 – 1.0 

≤ 1.0 
≤ 0.7 

≤ 1.0 
≤ 5.0 

Maximum Charge rate (C) 
1.0 

3.0 
1.0 

0.7 
3.0 

5.0 
Typical Discharge rate (C) 

≤ 1.0 
≤ 1.0 

≤ 1.0 
≤ 1.0 

≤ 1.0 
≤ 10 

Maximum Discharge rate (C) 
1.0 

30 (pulse) 
2.0 

1.0 
5.0 

10 
Cycle life 

500-1000 
1000 

2000-3000 
2000-3000 

> 3000 
> 5000 

Safety 
Average  

Good 
Good 

Average 
Very good 

Very good 
Cost 

Low 
Low 

Low 
High 

Low 
Very high 

Application in EV 
- 

- 
Nissan Leaf, 
BMW i3 

Tesla Motor 
BYD E6 

Mitsubishi i-
MiEV 

8 
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1.1.2 Battery Management System  
 

Safety concerns are crucial for the application of Li-ion battery because it is 
sensitive to its operating condition.  In order to ensure its safety, the battery must 
operates within its safety operating window, which is restricted by voltage and 
temperature [25].  The battery could burn or even explode if used beyond its 
maximum operating voltage (over-voltage).  Besides, under-voltage or over-
discharge of batteries could lead to irrecoverable capacity degradation [33].  On the 
other hand, the high operating temperature would cause battery destruction and the 
emission of flammable gases.  At extreme high temperatures, the thermal runaway 
would occur.  Besides, low operating temperatures will reduce the cycle life of the 
battery due to the deposition of metallic lithium on the surface of negative electrode.  
At the extreme low temperatures, the cathode of the battery will break down and 
cause internal short circuit of the battery [25].  The concepts of safety operating 
window is illustrated in Figure 1.3 [34]. 

 

 
Figure 1.3 Operating window for Li-ion battery [34] 
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A battery management system (BMS) is vital to realize a safe and reliable EV.  
The main function of the BMS is to ensure the proper usage of battery packs while it 
provides the sufficient electrical power for the operation of EVs.  Apart from 
preventing the battery from over-voltage, under-voltage and thermal abuse, the sub-
functions of BMS also include data acquisition, battery states estimation, safety 
management, cell balancing, charge control, and thermal management [25], [35]–
[37].  The schematic structure of a typical BMS is shown in Figure 1.4. 
 

 
Figure 1.4 Schematic structures of BMS 

 
Data acquisition acts as the input for BMS.  Generally, it measures the battery 

terminal voltage, battery current, battery temperature and ambient temperature.  
Since the battery pack of EV is built up by multiple battery cells, the measurement 
on each individual cell is necessary to ensure that each cell operates within its safety 
window.  Advanced data acquisition system also includes smoke detection, collision 
detection insulation detection and impedance detection for the detection of battery 
faults. 

 
Safety management is the primary task of BMS to prevent batteries from 

critical operating conditions, such as over-voltage, under-voltage, ultra high 
temperature, over-current, short-circuit, and loose connections.  For advanced 
versions of BMS, on-board diagnosis (OBD) system is also included for the 
maintenance of battery packs.  In this aspect, OBD stores the historical data of the 
battery and discovers the failure and abnormal status of the battery.  When an 

 
BMS Main  

Control Unit 
(MCU) 

Cell balancing 

Data acquisition 

Battery state 
estimation 

Charge control 

Safety management 

Thermal management 
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abnormal status is found, the warning devices will be activated to send an alert to the 
EV drivers.  

 
Thermal management is also an important function of BMS in order to 

manage the operating temperature of battery.  In this aspect, the temperature among 
the cells is equalised so that the operation of the battery cells is uniform.  Thermal 
management system detects the temperature distribution in the battery packs, and 
control the cooling power or heating power for batteries.  Generally, due to cost and 
space limitation, an air-cooling system is applied.  Apart from air-cooling, liquid 
cooling and phase-change materials are also applied in thermal management system 
[38][39]. 

 
Cell balancing is also an important feature of BMS so as to establish the 

uniformity of each cell in battery packs.  This is due to the fact that all cells are not 
alike although they are same type, same specifications, and manufactured at the same 
conditions.  The differences between each battery cells are unavoidable in term of 
capacity, internal resistance or self-discharge rate.  The difference could be caused 
by poor production and packaging process of the battery manufacturer.  Without this 
feature, the uniformity of battery cells will be degraded with the increase of 
operating time, which leads to over-voltage and under-voltage problems in battery 
pack.  Passive balancing and active balancing are the two typical approaches for cell 
balancing [40].  Passive balancing technique compares the cell voltage to detect the 
difference between highest voltage cell and lowest voltage cell.  Then, the high 
voltage cell will be discharged by using a discharge resistor.  On the other hand, 
active cell balancing technique transfers charge from high voltage cells to low 
voltage cells, thus owning higher energy efficiency than passive balancing technique.  
However, passive balancing technique is still preferred by EV industries because its 
cost is much lower compared to active balancing technique.  

 
Charger control is an important feature of BMS used in order to control the 

recharge process of the battery.  Generally, constant current constant voltage (CC-
CV) charging scheme is applied to charge Li-ion battery.  With assistance from cell 
balancing system and safety management system, a safe and uniform charging 
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process is expected.  Then, a charger control system is applied so that the battery 
pack is charged under appropriate charging voltage and charging rate.  The settings 
for the charger are unique according to the capacity and voltage of the battery pack.  

 
Battery state estimation is also an important function for BMS.  State-of-

charge (SoC) and state-of-health (SoH) are the two important states to be estimated.  
In this context, SoC gives information of the remaining capacity of the battery while 
SoH presents the performance degradation of battery.  These battery states are vital 
for the EV driver to estimate the real-time status of battery pack.  It is considered as 
the most challenging task for a BMS because the states cannot be measured directly.  
Moreover, the estimation must be done without affecting the operations of the EV. 
 

1.1.3 State-of-charge Estimation  
 

In general, SoC is defined as the remaining storage energy of a battery.  For 
EV application, SoC estimation acts as the “fuel gauge”, which is crucial for the 
prediction of driving range.  An accurate SoC estimation is required to prevent EVs 
from running out of charge on the road [41].  Moreover, SoC is important to increase 
the efficiency of battery by optimally controlling the charge and discharge processes 
[42], especially in hybrid energy storage systems.  However, the estimation of SoC is 
a complicated process which is dependent on several factors, such as temperature, 
usable capacity and internal resistance [43]-[44].  Several techniques have been 
proposed for SoC estimation as shown in Figure 1.5, which can be categorized into 
three groups [45]–[47]:  

(i) direct measurement methods,  
(ii) black-box model-based methods, and  
(iii) state-space model-based methods. 
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Figure 1.5 SoC estimation methods 

 
Direct measurement methods, such as coulomb counting method [48]–[49], 

open circuit voltage (OCV) method [50] and impedance measurement method [51]–
[52], are the open-loop approaches for SoC estimation.  These methods indicate SoC 
by measuring a particular SoC-related parameter.  Coulomb counting method, which 
uses real-time current integration, is widely applied in EVs’ BMS because it is easier 
to implement with low computation.  However, its accuracy is unavoidably affected 
by the accumulative error caused by uncertain disturbances and sensor noises.  
Moreover, the method relies on prior knowledge of the initial SoC, which is rarely 
available in practical applications [46].  

 
OCV method is also applied to indicate SoC by knowing for a fact that the 

battery terminal voltage at chemical equilibrium state is dependent on SoC.  
However, an accurate SoC is difficult to be estimated from OCV because the OCV-
SoC relationship is nearly flat.  It was reported that the variation of OCV is less than 
0.2 V for the SoC range between 10 % and 90 % SoC, especially for LFP battery 
[53].  Therefore, it requires high precision voltage sensors for practical application.  
Typically, OCV method is applied together with coulomb counting method to 
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postulate the value of initial SoC.  However, a long relaxation time is required for 
battery to reach its OCV, which is considered impractical for EV applications [54].  

 
Impedance measurement is also a straight-forward method for SoC 

measurement.  In this method, by using electrochemical impedance spectroscopy 
(EIS), a small alternating current (AC) signal with various frequencies is injected 
into the battery for impedance measurement.  However, the results obtained from 
EIS is difficult to interpret because the impedance is varied with SoC and 
temperature [55].  Moreover, the impedance measurement should be done on a 
battery which is disconnected from a charger or load [56].  Therefore, it is considered 
not suitable for EV application because the SoC estimation should be done without 
affecting the EVs’ operation. 

 
Black-box battery models, which were established by computational 

intelligence approaches, are also applied for SoC estimation.  In this aspect, a nonlinear 
relationship between SoC and its influencing parameters are modelled by using 
artificial neural network (ANN) [57]–[59], fuzzy logic [60]–[62], or support vector 
machine (SVM) [63][64].  Generally, black-box model-based methods give a good 
accuracy in SoC estimation due to the powerful capability of the computational 
intelligence.  Unlike coulomb counting method, initial SoC is not required for these 
methods.  Moreover, black-box model can be establishing solely based on the existing 
input-output training data sets without understanding the chemical reaction of battery.  
However, their performance is greatly affected by the reliability and the amount of the 
training data set [65].  Limited amounts of training data set would result in poor 
robustness [46].  Therefore, a large amount of battery tests are needed to obtain a 
good model which can be very time-consuming.  In addition, the offline learning 
processes for the black-box model requires iteratively tuning, which leads to heavy 
computational [47].  

 
State-space model-based methods seem to be the best approach for SoC 

estimation due to their closed loop nature, real-time estimation, and good reliability.  
Currently, more attention have been given on the methods and several algorithms, 
such as sliding-mode observer [66]–[70], Luenberger observer [71], proportional-
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integral observer [72], particle filter [73]–[74], iterated smooth variable structure filter 
[75]–[76], H-∞ filter [43][77], and Kalman filter [78] have been applied in state-space 
model-based SoC estimation method.  The methods measure current and voltage 
signals while considering the estimation error range, and thus form a close loop and 
online SoC estimation method [47][79].  The methods do not rely on an accurate 
initial SOC, and thus avoids the problem of accumulative error.  An accurate state-
space model is necessary to establish an accurate SoC estimation.  In general practice, 
state-space model derived from equivalent circuit battery model is applied.  Although 
state-space model can also be derived from electrochemical model [80], a heavier 
computational burden is required to solve the complicated equations of the 
electrochemical model.  
 

1.2 Problem Statement  
 

The implementation of a new battery technology and development of an 
efficient BMS is the key to improving the performance of EVs.  Currently, LTO 
battery, which has the features of fast charging and superior safety, is considered as a 
promising candidate for EV’s energy storage system.  The fast charging features of a 
LTO battery can be fully utilised if a reliable battery charger control is realised.  For 
this purpose, an accurate battery model that simulates the charging characteristic of 
LTO battery is vital. 

 
In addition, an accurate SoC estimation should be realised in order to monitor 

the operation of the battery.  Extended Kalman filter (EKF) and unscented Kalman 
filter (UKF) are presently considered as the most promising methods for SoC 
estimation due to their excellent state estimation and noise immunity.  However, the 
accuracy of Kalman filter-based SoC estimation is highly dependent on the prior 
setting of error covariance.  Although the covariance matching adaptive rule is a 
convenient way to improve the accuracy of Kalman filters, it requires large memory 
space to operate.  An improvement of Kalman filter-based SoC estimation should be 
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further explored and a new adaptive in order to overcome this shortage must be 
established.   

 
Meanwhile, the accuracy of the battery model gives a large impact on the 

Kalman filter-based SoC estimation.  Generally, a huge amount of laboratorial 
experiments are carried out to establish an accurate battery model, which is costly 
and time consuming.  Moreover, the parameters of the battery model are typically 
varied with several factors, such as SoC, ambient temperature and current.  Therefore, 
the formulated battery model might only be suitable for the specified operating 
condition.  A better approach should be configured to solve these problems.  
 

1.3 Thesis Objectives and Contributions  
 
The objectives of this study are: 
(i) to investigate the dynamic behaviours of LTO battery through several 

battery tests. 
(ii) to develop a battery model for battery charger design which is suitable 

for small signal analysis and large signal simulation. 
(iii) to develop a robust SoC estimation method using Kalman filter with 

genetic algorithm (GA) offline battery modelling. 
(iv) to develop a robust SoC estimation method with online battery 

modelling using Kalman filter. 
 

While performing this study, the thesis makes the following contributions: 
(i) A new transfer function-based battery model is developed to simulate 

the charging behaviour of LTO batteries under several charging rates 
and ambient temperatures.  The proposed battery model provides a 
good solution to the small-signal analysis and large-signal simulation 
of battery charger designs.  

(ii) Busse’s adaptive rule is applied to improve the accuracy of Kalman 
filter-based SoC estimation.  The main motivation is to reduce the 



17  

 
 

complexity of the existing adaptive rules which require large memory 
space.  Application of Busse’s adaptive rule does not need large 
memory capacity to store the historical data of estimation, and thus is 
suitable for real-time implementation. 

(iii) Busse’s adaptive rule is applied in joint Kalman filter for SoC 
estimation and online battery modelling.  In this aspect, the SoC and 
model parameters are estimated simultaneously by using Kalman 
filter.  The parameters of the battery model are estimated in real-time 
without requiring precise measurement tools, experienced researchers 
and large amount of battery tests, thus reducing the overall complexity 
of BMS development. 

 

1.4 Methodology  
 
In this thesis, the research methodology is divided into 4 different sessions: 
(i) Experimental test on LTO battery, 
(ii) Formulation of transfer function-based battery model, 
(iii) SoC estimation using Kalman filter, and 
(iv) SoC estimation and online battery modelling using joint Kalman filter. 
 
MATLAB and MATLAB/Simulink are used as the simulator throughout the 

thesis. 
 

1.4.1 Experimental Test on LTO Battery  
 

First of all, the dynamic voltage-current behaviours of LTO batteries are 
investigated by using battery tests.  In the experimental study, continuous current 
charge, continuous current discharge, pulsed current charge, and pulsed current 
discharge tests are combined to form a single profile.  This profile is called as 
continuous current test (CCT) and pulsed current test (PCT).  The tests are conducted 
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by using 3 current rates (i.e. 0.5 C, 1 C, and 2 C) under 4 ambient temperatures (i.e. -
25 ºC, 0 ºC, 25 ºC, and 50 ºC).  Since the PCT is unable to perform at 2 C / -25 ºC 
due to the limitation of battery, only 11 tests are applied for CCT and PCT tests.  On 
the other hand, modified DST is also applied to test the LTO battery under dynamic 
load conditions.  The test is made by modifying the conventional DST so that it suits 
to our lab capability.  The test are conducted under 6 ambient temperature,  i.e. -15 
ºC , 0 ºC, 15 ºC, 25 ºC, 35 ºC and 50 ºC.  Throughout the test, the battery voltage is 
monitored so that its operating temperature is within 1.6 V − 2.75 V to avoid over-
voltage and under-voltage of the battery.  The details of the experimental test are 
further explained in Chapter 3. 
 

1.4.2 Formulation of Transfer function-based Battery Model  
 

In this study, a transfer function-based battery model is formulated to 
simulate the charging profiles of LTO battery.  Figure 1.6 illustrates the methodology 
for the formulation of transfer function-based battery model.  

 

 
Figure 1.6 Formulation of transfer function-based battery model 

 
The charging behaviours of LTO battery are obtained from the experimental 

results of continuous current charge.  Enhanced charging curve normalisation is 

Constant Current Charge Profiles 

Enhanced Charging Curve Normalisation  

Temperature-based normalised charging equation  

Transfer function-based battery model  
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applied to find out the common characteristics of the battery charging profiles.  Then, 
temperature-based normalised charging equation is developed to simulate the battery 
charging behaviours at several charge rates and ambient temperatures.  Lastly, a 
transfer function is formulated based on the developed normalised charging equation.  
The accuracy of the battery model is evaluated by comparing the simulated and 
experimental charging profiles.  Then, the error of the battery modelling is analysed 
by using root-mean-square error (RMSE) and mean relative error (MRE).  The 
details are further explained in Chapter 4. 
 

1.4.3 SoC Estimation using Kalman Filter  
 

Figure 1.7 illustrates the methodology of SoC estimation using Kalman filter; 
both with adaptive rule and without adaptive rule.    

  

 
Figure 1.7 SoC estimation using Kalman filter 

 
In SoC estimation, second-order Thevenin model is used to simulate the 
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estimation, the second-order Thevenin model is first transformed into a state-space 
model.  Based on the state-space model, the SoC estimation is performed by using 
Extended Kalman filer (EKF), Unscented Kalman filter (UKF), Covariance-
matching adaptive EKF, Covariance-matching adaptive UKF, Busse's adaptive EKF, 
and Busse's adaptive UKF.  The accuracy of the SoC estimation is analysed by using 
simulation and experimental study.  Then, the error of SoC estimation is analysed by 
using root-mean-square error (RMSE) and mean relative error (MRE).  The details 
are further explained in Chapter 5. 

 

1.4.4 SoC Estimation and Online Battery Modelling using Joint Kalman filter 
 

Figure 1.8 illustrates the methodology of SoC estimation and online battery 
modelling using joint Kalman filter.   

 

 
Figure 1.8 SoC estimation and online battery modelling using Joint Kalman filter 
 

In order to implement joint Kalman filter, an augmented state-space model is 
formed based on the structure of second-order Thevenin model, where the state 
equation includes both battery state and battery parameters.  By using the augmented 
state-space model, the SoC estimation and online battery modelling are performed 
simultaneously by using Extended Kalman filer (EKF), Unscented Kalman filter 
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(UKF), Covariance-matching adaptive EKF, Covariance-matching adaptive UKF, 
Busse's adaptive EKF, and Busse's adaptive UKF.  The accuracy of the SoC 
estimation is analysed by using simulation and experimental study.  In simulation 
study, battery model with constant parameters, and battery model with variable 
parameters are applied to investigate the accuracy of SoC estimation and online 
battery modelling performed by the algorithms.  Moreover, the error of SoC 
estimation and battery modelling are analysed by using root-mean-square error 
(RMSE) and mean relative error (MRE).  The details are further explained in Chapter 
6.   
 

1.5 Scope of Research 
 
Battery modelling and SoC estimation are wide-ranging research topics.  In 

this thesis, LTO battery is chosen since it is considered as the latest technology for 
Li-ion battery.  Transfer function-based model and equivalent circuit model are 
studied in detail in this thesis.  The transfer function-based model is developed based 
on the charging behaviours of LTO cells, however, it is also believed that the 
methodology of the formulation of transfer function-based model could be applied 
for another types of battery.  The transfer function-based model is developed for the 
purpose of charger design and it represents battery behaviours as an empirical 
equation.  It is important to clarify that it is not representing the exact 
electrochemical processes within the battery.   

 
For equivalent circuit model, second-order Thevenin model is applied in this 

research.  The battery model is formulated based on the electrical characteristics of 
the LTO battery without considering OCV hysteresis effect, self-discharge effect, 
capacity fading losses and calendar losses.  The thermal modelling of the battery is 
also not included in the battery modelling.  Most importantly, only cell level 
modelling is presented in this thesis, which is not similar to the multiple cells as 
applied in EV battery pack.  This approach is made in order to avoid the multiple 
cells issues, such as cell imbalance and cell voltage monitoring. 
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Kalman filter-based SoC estimation technique is chosen for this thesis due to 

its robustness as proven by the previous literatures.  Extended Kalman filter and 
Unscented Kalman filter are applied in the study.  Moreover, covariance matching 
rule and Busse’s adaptive rule are chosen as the adaptive rules for Kalman filter.  For 
the purpose of verification, a benchmark for the SoC estimation is created, where the 
laboratorial Ah-counting method is applied to find out the true SoC value throughout 
the battery tests.   
 

1.6 Thesis Organisation  
 
The rest of the thesis is organised as follows: 
 
Chapter 2 provides a literature review on the dynamic behaviours of a 

battery, battery models, battery tests and parameter identification techniques.  The 
applications of Kalman filters for online battery modelling and SoC estimation are 
also reviewed.  The algorithm of EKF, UKF and the existing adaptive rules are also 
explained in detail. 

 
Chapter 3 describes the experimental set-up used in the thesis.  The 

procedures of battery tests, which are used to identify the parameters of the battery 
model are presented and described. 

 
Chapter 4 proposes a transfer function-based battery model to simulate the 

charging behaviours of LTO battery.  A new approach of capturing nonlinear 
charging behaviours is also presented in detail.  Simulation and the experimental 
study on the proposed battery model are also presented.  The performance of the 
proposed battery model is discussed. 

 
Chapter 5 proposes the application of Busse’s adaptive rule in Kalman filter-

based SoC estimation.  In this case, the Busse’s adaptive rule is applied on both EKF 
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and UKF.  The performance of Busse’s adaptive EKF and Busse’s adaptive UKF is 
compared with the conventional EKF and UKF, as well as the covariance-matching 
adaptive EKF and covariance-matching adaptive UKF.  Simulation and experimental 
studies have been done to verify the proposed method. 

 
Chapter 6 applies Kalman filter for SoC estimation with online battery 

modelling.  In this case, SoC and model parameters are estimated simultaneously by 
using joint Kalman filters.  Similar to Chapter 5, Busse’s adaptive rule is proposed to 
increase the accuracy of the SoC estimation with online battery modelling.  The 
simulation and experimental studies have been done to verify the proposed method.   

 
Chapter 7 gives the conclusion of the thesis and possible directions of 

further research on this work. 
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