4,288 research outputs found

    Structured Knowledge Representation for Image Retrieval

    Full text link
    We propose a structured approach to the problem of retrieval of images by content and present a description logic that has been devised for the semantic indexing and retrieval of images containing complex objects. As other approaches do, we start from low-level features extracted with image analysis to detect and characterize regions in an image. However, in contrast with feature-based approaches, we provide a syntax to describe segmented regions as basic objects and complex objects as compositions of basic ones. Then we introduce a companion extensional semantics for defining reasoning services, such as retrieval, classification, and subsumption. These services can be used for both exact and approximate matching, using similarity measures. Using our logical approach as a formal specification, we implemented a complete client-server image retrieval system, which allows a user to pose both queries by sketch and queries by example. A set of experiments has been carried out on a testbed of images to assess the retrieval capabilities of the system in comparison with expert users ranking. Results are presented adopting a well-established measure of quality borrowed from textual information retrieval

    Specific-to-General Learning for Temporal Events with Application to Learning Event Definitions from Video

    Full text link
    We develop, analyze, and evaluate a novel, supervised, specific-to-general learner for a simple temporal logic and use the resulting algorithm to learn visual event definitions from video sequences. First, we introduce a simple, propositional, temporal, event-description language called AMA that is sufficiently expressive to represent many events yet sufficiently restrictive to support learning. We then give algorithms, along with lower and upper complexity bounds, for the subsumption and generalization problems for AMA formulas. We present a positive-examples--only specific-to-general learning method based on these algorithms. We also present a polynomial-time--computable ``syntactic'' subsumption test that implies semantic subsumption without being equivalent to it. A generalization algorithm based on syntactic subsumption can be used in place of semantic generalization to improve the asymptotic complexity of the resulting learning algorithm. Finally, we apply this algorithm to the task of learning relational event definitions from video and show that it yields definitions that are competitive with hand-coded ones

    Learning-assisted Theorem Proving with Millions of Lemmas

    Full text link
    Large formal mathematical libraries consist of millions of atomic inference steps that give rise to a corresponding number of proved statements (lemmas). Analogously to the informal mathematical practice, only a tiny fraction of such statements is named and re-used in later proofs by formal mathematicians. In this work, we suggest and implement criteria defining the estimated usefulness of the HOL Light lemmas for proving further theorems. We use these criteria to mine the large inference graph of the lemmas in the HOL Light and Flyspeck libraries, adding up to millions of the best lemmas to the pool of statements that can be re-used in later proofs. We show that in combination with learning-based relevance filtering, such methods significantly strengthen automated theorem proving of new conjectures over large formal mathematical libraries such as Flyspeck.Comment: journal version of arXiv:1310.2797 (which was submitted to LPAR conference

    Subsumption Algorithms for Three-Valued Geometric Resolution

    Full text link
    In our implementation of geometric resolution, the most costly operation is subsumption testing (or matching): One has to decide for a three-valued, geometric formula, if this formula is false in a given interpretation. The formula contains only atoms with variables, equality, and existential quantifiers. The interpretation contains only atoms with constants. Because the atoms have no term structure, matching for geometric resolution is hard. We translate the matching problem into a generalized constraint satisfaction problem, and discuss several approaches for solving it efficiently, one direct algorithm and two translations to propositional SAT. After that, we study filtering techniques based on local consistency checking. Such filtering techniques can a priori refute a large percentage of generalized constraint satisfaction problems. Finally, we adapt the matching algorithms in such a way that they find solutions that use a minimal subset of the interpretation. The adaptation can be combined with every matching algorithm. The techniques presented in this paper may have applications in constraint solving independent of geometric resolution.Comment: This version was revised on 18.05.201

    An Overview of Backtrack Search Satisfiability Algorithms

    No full text
    Propositional Satisfiability (SAT) is often used as the underlying model for a significan
    corecore