3,921 research outputs found

    GraphBLAST: A High-Performance Linear Algebra-based Graph Framework on the GPU

    Full text link
    High-performance implementations of graph algorithms are challenging to implement on new parallel hardware such as GPUs because of three challenges: (1) the difficulty of coming up with graph building blocks, (2) load imbalance on parallel hardware, and (3) graph problems having low arithmetic intensity. To address some of these challenges, GraphBLAS is an innovative, on-going effort by the graph analytics community to propose building blocks based on sparse linear algebra, which will allow graph algorithms to be expressed in a performant, succinct, composable and portable manner. In this paper, we examine the performance challenges of a linear-algebra-based approach to building graph frameworks and describe new design principles for overcoming these bottlenecks. Among the new design principles is exploiting input sparsity, which allows users to write graph algorithms without specifying push and pull direction. Exploiting output sparsity allows users to tell the backend which values of the output in a single vectorized computation they do not want computed. Load-balancing is an important feature for balancing work amongst parallel workers. We describe the important load-balancing features for handling graphs with different characteristics. The design principles described in this paper have been implemented in "GraphBLAST", the first high-performance linear algebra-based graph framework on NVIDIA GPUs that is open-source. The results show that on a single GPU, GraphBLAST has on average at least an order of magnitude speedup over previous GraphBLAS implementations SuiteSparse and GBTL, comparable performance to the fastest GPU hardwired primitives and shared-memory graph frameworks Ligra and Gunrock, and better performance than any other GPU graph framework, while offering a simpler and more concise programming model.Comment: 50 pages, 14 figures, 14 table

    Speculative Segmented Sum for Sparse Matrix-Vector Multiplication on Heterogeneous Processors

    Full text link
    Sparse matrix-vector multiplication (SpMV) is a central building block for scientific software and graph applications. Recently, heterogeneous processors composed of different types of cores attracted much attention because of their flexible core configuration and high energy efficiency. In this paper, we propose a compressed sparse row (CSR) format based SpMV algorithm utilizing both types of cores in a CPU-GPU heterogeneous processor. We first speculatively execute segmented sum operations on the GPU part of a heterogeneous processor and generate a possibly incorrect results. Then the CPU part of the same chip is triggered to re-arrange the predicted partial sums for a correct resulting vector. On three heterogeneous processors from Intel, AMD and nVidia, using 20 sparse matrices as a benchmark suite, the experimental results show that our method obtains significant performance improvement over the best existing CSR-based SpMV algorithms. The source code of this work is downloadable at https://github.com/bhSPARSE/Benchmark_SpMV_using_CSRComment: 22 pages, 8 figures, Published at Parallel Computing (PARCO

    GPU-Accelerated Algorithms for Compressed Signals Recovery with Application to Astronomical Imagery Deblurring

    Get PDF
    Compressive sensing promises to enable bandwidth-efficient on-board compression of astronomical data by lifting the encoding complexity from the source to the receiver. The signal is recovered off-line, exploiting GPUs parallel computation capabilities to speedup the reconstruction process. However, inherent GPU hardware constraints limit the size of the recoverable signal and the speedup practically achievable. In this work, we design parallel algorithms that exploit the properties of circulant matrices for efficient GPU-accelerated sparse signals recovery. Our approach reduces the memory requirements, allowing us to recover very large signals with limited memory. In addition, it achieves a tenfold signal recovery speedup thanks to ad-hoc parallelization of matrix-vector multiplications and matrix inversions. Finally, we practically demonstrate our algorithms in a typical application of circulant matrices: deblurring a sparse astronomical image in the compressed domain

    A High-Throughput Solver for Marginalized Graph Kernels on GPU

    Get PDF
    We present the design and optimization of a linear solver on General Purpose GPUs for the efficient and high-throughput evaluation of the marginalized graph kernel between pairs of labeled graphs. The solver implements a preconditioned conjugate gradient (PCG) method to compute the solution to a generalized Laplacian equation associated with the tensor product of two graphs. To cope with the gap between the instruction throughput and the memory bandwidth of current generation GPUs, our solver forms the tensor product linear system on-the-fly without storing it in memory when performing matrix-vector dot product operations in PCG. Such on-the-fly computation is accomplished by using threads in a warp to cooperatively stream the adjacency and edge label matrices of individual graphs by small square matrix blocks called tiles, which are then staged in registers and the shared memory for later reuse. Warps across a thread block can further share tiles via the shared memory to increase data reuse. We exploit the sparsity of the graphs hierarchically by storing only non-empty tiles using a coordinate format and nonzero elements within each tile using bitmaps. Besides, we propose a new partition-based reordering algorithm for aggregating nonzero elements of the graphs into fewer but denser tiles to improve the efficiency of the sparse format.We carry out extensive theoretical analyses on the graph tensor product primitives for tiles of various density and evaluate their performance on synthetic and real-world datasets. Our solver delivers three to four orders of magnitude speedup over existing CPU-based solvers such as GraKeL and GraphKernels. The capability of the solver enables kernel-based learning tasks at unprecedented scales
    • …
    corecore