82 research outputs found

    Highly Automated Formal Verification of Arithmetic Circuits

    Get PDF
    This dissertation investigates the problems of two distinctive formal verification techniques for verifying large scale multiplier circuits and proposes two approaches to overcome some of these problems. The first technique is equivalence checking based on recurrence relations, while the second one is the symbolic computation technique which is based on the theory of Gröbner bases. This investigation demonstrates that approaches based on symbolic computation have better scalability and more robustness than state-of-the-art equivalence checking techniques for verification of arithmetic circuits. According to this conclusion, the thesis leverages the symbolic computation technique to verify floating-point designs. It proposes a new algebraic equivalence checking, in contrast to classical combinational equivalence checking, the proposed technique is capable of checking the equivalence of two circuits which have different architectures of arithmetic units as well as control logic parts, e.g., floating-point multipliers

    Multilevel Modeling, Formal Analysis, and Characterization of Single Event Transients Propagation in Digital Systems

    Get PDF
    RÉSUMÉ La croissance exponentielle du nombre de transistors par puce a apporté des progrès considérables aux performances et fonctionnalités des dispositifs semi-conducteurs avec une miniaturisation des dimensions physiques ainsi qu’une augmentation de vitesse. De nos jours, les appareils électroniques utilisés dans un large éventail d’applications telles que les systèmes de divertissement personnels, l’industrie automobile, les systèmes électroniques médicaux, et le secteur financier ont changé notre façon de vivre. Cependant, des études récentes ont démontré que le rétrécissement permanent de la taille des transistors qui s’approchent des dimensions nanométriques fait surgir des défis majeurs. La réduction de la fiabilité au sens large (c.-à-d., la capacité à fournir la fonction attendue) est l’un d’entre eux. Lorsqu’un système est conçu avec une technologie avancée, on s’attend à ce qu’ il connaît plus de défaillances dans sa durée de vie. De telles défaillances peuvent avoir des conséquences graves allant des pertes financières aux pertes humaines. Les erreurs douces induites par la radiation, qui sont apparues d’abord comme une source de panne plutôt exotique causant des anomalies dans les satellites, sont devenues l’un des problèmes les plus difficiles qui influencent la fiabilité des systèmes microélectroniques modernes, y compris les dispositifs terrestres. Dans le secteur médical par exemple, les erreurs douces ont été responsables de l’échec et du rappel de plusieurs stimulateurs cardiaques implantables. En fonction du transistor affecté lors de la fabrication, le passage d’une particule peut induire des perturbations isolées qui se manifestent comme un basculement du contenu d’une cellule de mémoire (c.-à-d., Single Event Upsets (SEU)) ou un changement temporaire de la sortie (sous forme de bruit) dans la logique combinatoire (c.-à-d., Single Event Transients (SETs)). Les SEU ont été largement étudiés au cours des trois dernières décennies, car ils étaient considérés comme la cause principale des erreurs douces. Néanmoins, des études expérimentales ont montré qu’avec plus de miniaturisation technologique, la contribution des SET au taux d’erreurs douces est remarquable et qu’elle peut même dépasser celui des SEU dans les systèmes à haute fréquence [1], [2]. Afin de minimiser l’impact des erreurs douces, l’effet des SET doit être modélisé, prédit et atténué. Toutefois, malgré les progrès considérables accomplis dans la vérification fonctionnelle des circuits numériques, il y a eu très peu de progrès en matiàre de vérification non-fonctionnelle (par exemple, l’analyse des erreurs douces). Ceci est dû au fait que la modélisation et l’analyse des propriétés non-fonctionnelles des SET pose un grand défi. Cela est lié à la nature aléatoire des défauts et à la difficulté de modéliser la variation de leurs caractéristiques lorsqu’ils se propagent.----------ABSTRACT The exponential growth in the number of transistors per chip brought tremendous progress in the performance and the functionality of semiconductor devices associated with reduced physical dimensions and higher speed. Electronic devices used in a wide range of applications such as personal entertainment systems, automotive industry, medical electronic systems, and financial sector changed the way we live nowadays. However, recent studies reveal that further downscaling of the transistor size at nano-scale technology leads to major challenges. Reliability (i.e., ability to provide intended functionality) is one of them, where a system designed in nano-scale nodes is expected to experience more failures in its lifetime than if it was designed using larger technology node size. Such failures can lead to serious conséquences ranging from financial losses to even loss of human life. Soft errors induced by radiation, which were initially considered as a rather exotic failure mechanism causing anomalies in satellites, have become one of the most challenging issues that impact the reliability of modern microelectronic systems, including devices at terrestrial altitudes. For instance, in the medical industry, soft errors have been responsible of the failure and recall of many implantable cardiac pacemakers. Depending on the affected transistor in the design, a particle strike can manifest as a bit flip in a state element (i.e., Single Event Upset (SEU)) or temporally change the output of a combinational gate (i.e., Single Event Transients (SETs)). Initially, SEUs have been widely studied over the last three decades as they were considered to be the main source of soft errors. However, recent experiments show that with further technology downscaling, the contribution of SETs to the overall soft error rate is remarkable and in high frequency systems, it might exceed that of SEUs [1], [2]. In order to minimize the impact of soft errors, the impact of SETs needs to be modeled, predicted, and mitigated. However, despite considerable progress towards developing efficient methodologies for the functional verification of digital designs, advances in non-functional verification (e.g., soft error analysis) have been lagging. This is due to the fact that the modeling and analysis of non-functional properties related to SETs is very challenging. This can be related to the random nature of these faults and the difficulty of modeling the variation in its characteristics while propagating. Moreover, many details about the design structure and the SETs characteristics may not be available at high abstraction levels. Thus, in high level analysis, many assumptions about the SETs behavior are usually made, which impacts the accuracy of the generated results. Consequently, the lowcost detection of soft errors due to SETs is very challenging and requires more sophisticated techniques

    Side-Channel Attacks and Countermeasures for the MK-3 Authenticated Encryption Scheme

    Get PDF
    In the field of cryptography, the focus is often placed on security in a mathematical or information-theoretic sense; for example, cipher security is typically evaluated by the difficulty of deducing the plaintext from the ciphertext without knowledge of the key. However, once these cryptographic schemes are implemented in electronic devices, another class of attack presents itself. Side-channel attacks take advantage of the side effects of performing a computation, such as power consumption or electromagnetic emissions, to extract information outside of normal means. In particular, these side-channels can reveal parts of the internal state of a computation. This is important because intermediate values occurring during computation are typically considered implementation details, invisible to a potential attacker. If this information is revealed, then the assumptions of a non-side-channel-aware security analysis based only on inputs and outputs will no longer hold, potentially enabling an attack. This work tests the effectiveness of power-based side-channel attacks against MK-3, a customizable authenticated encryption scheme developed in a collaboration between RIT and L3Harris Technologies. Using an FPGA platform, Correlation Power Analysis (CPA) is performed on several different implementations of the algorithm to evaluate their resistance to power side-channel attacks. This method does not allow the key to be recovered directly; instead, an equivalent 512-bit intermediate state value is targeted. By applying two sequential stages of analysis, a total of between 216 and 322 bits are recovered, dependent on customization parameters. If a 128-bit key is used, then this technique has no benefit to an attacker over brute-forcing the key itself; however, in the case of a 256-bit key, CPA may provide up to a 66-bit advantage. In order to completely defend MK-3 against this type of attack, several potential countermeasures are discussed at the implementation, design, and overall system levels

    Systematic Model-based Design Assurance and Property-based Fault Injection for Safety Critical Digital Systems

    Get PDF
    With advances in sensing, wireless communications, computing, control, and automation technologies, we are witnessing the rapid uptake of Cyber-Physical Systems across many applications including connected vehicles, healthcare, energy, manufacturing, smart homes etc. Many of these applications are safety-critical in nature and they depend on the correct and safe execution of software and hardware that are intrinsically subject to faults. These faults can be design faults (Software Faults, Specification faults, etc.) or physically occurring faults (hardware failures, Single-event-upsets, etc.). Both types of faults must be addressed during the design and development of these critical systems. Several safety-critical industries have widely adopted Model-Based Engineering paradigms to manage the design assurance processes of these complex CPSs. This thesis studies the application of IEC 61508 compliant model-based design assurance methodology on a representative safety-critical digital architecture targeted for the Nuclear power generation facilities. The study presents detailed experiences and results to demonstrate the benefits of Model testing in finding design flaws and its relevance to subsequent verification steps in the workflow. Additionally, to study the impact of physical faults on the digital architecture we develop a novel property-based fault injection method that overcomes few deficiencies of traditional fault injection methods. The model-based fault injection approach presented here guarantees high efficiency and near-exhaustive input/state/fault space coverage, by utilizing formal model checking principles to identify fault activation conditions and prove the fault tolerance features. The fault injection framework facilitates automated integration of fault saboteurs throughout the model to enable exhaustive fault location coverage in the model

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 1: Army fault tolerant architecture overview

    Get PDF
    Digital computing systems needed for Army programs such as the Computer-Aided Low Altitude Helicopter Flight Program and the Armored Systems Modernization (ASM) vehicles may be characterized by high computational throughput and input/output bandwidth, hard real-time response, high reliability and availability, and maintainability, testability, and producibility requirements. In addition, such a system should be affordable to produce, procure, maintain, and upgrade. To address these needs, the Army Fault Tolerant Architecture (AFTA) is being designed and constructed under a three-year program comprised of a conceptual study, detailed design and fabrication, and demonstration and validation phases. Described here are the results of the conceptual study phase of the AFTA development. Given here is an introduction to the AFTA program, its objectives, and key elements of its technical approach. A format is designed for representing mission requirements in a manner suitable for first order AFTA sizing and analysis, followed by a discussion of the current state of mission requirements acquisition for the targeted Army missions. An overview is given of AFTA's architectural theory of operation

    Advanced Launch System Multi-Path Redundant Avionics Architecture Analysis and Characterization

    Get PDF
    The objective of the Multi-Path Redundant Avionics Suite (MPRAS) program is the development of a set of avionic architectural modules which will be applicable to the family of launch vehicles required to support the Advanced Launch System (ALS). To enable ALS cost/performance requirements to be met, the MPRAS must support autonomy, maintenance, and testability capabilities which exceed those present in conventional launch vehicles. The multi-path redundant or fault tolerance characteristics of the MPRAS are necessary to offset a reduction in avionics reliability due to the increased complexity needed to support these new cost reduction and performance capabilities and to meet avionics reliability requirements which will provide cost-effective reductions in overall ALS recurring costs. A complex, real-time distributed computing system is needed to meet the ALS avionics system requirements. General Dynamics, Boeing Aerospace, and C.S. Draper Laboratory have proposed system architectures as candidates for the ALS MPRAS. The purpose of this document is to report the results of independent performance and reliability characterization and assessment analyses of each proposed candidate architecture and qualitative assessments of testability, maintainability, and fault tolerance mechanisms. These independent analyses were conducted as part of the MPRAS Part 2 program and were carried under NASA Langley Research Contract NAS1-17964, Task Assignment 28

    Exploring formal verification methodology for FPGA-based digital systems.

    Full text link
    Abstract Not Provide

    Design, Analysis and Test of Logic Circuits under Uncertainty.

    Full text link
    Integrated circuits are increasingly susceptible to uncertainty caused by soft errors, inherently probabilistic devices, and manufacturing variability. As device technologies scale, these effects become detrimental to circuit reliability. In order to address this, we develop methods for analyzing, designing, and testing circuits subject to probabilistic effects. Our main contributions are: 1) a fast, soft-error rate (SER) analyzer that uses functional-simulation signatures to capture error effects, 2) novel design techniques that improve reliability using little area and performance overhead, 3) a matrix-based reliability-analysis framework that captures many types of probabilistic faults, and 4) test-generation/compaction methods aimed at probabilistic faults in logic circuits. SER analysis must account for the main error-masking mechanisms in ICs: logic, timing, and electrical masking. We relate logic masking to node testability of the circuit and utilize functional-simulation signatures, i.e., partial truth tables, to efficiently compute estability (signal probability and observability). To account for timing masking, we compute error-latching windows (ELWs) from timing analysis information. Electrical masking is incorporated into our estimates through derating factors for gate error probabilities. The SER of a circuit is computed by combining the effects of all three masking mechanisms within our SER analyzer called AnSER. Using AnSER, we develop several low-overhead techniques that increase reliability, including: 1) an SER-aware design method that uses redundancy already present within the circuit, 2) a technique that resynthesizes small logic windows to improve area and reliability, and 3) a post-placement gate-relocation technique that increases timing masking by decreasing ELWs. We develop the probabilistic transfer matrix (PTM) modeling framework to analyze effects beyond soft errors. PTMs are compressed into algebraic decision diagrams (ADDs) to improve computational efficiency. Several ADD algorithms are developed to extract reliability and error susceptibility information from PTMs representing circuits. We propose new algorithms for circuit testing under probabilistic faults, which require a reformulation of existing test techniques. For instance, a test vector may need to be repeated many times to detect a fault. Also, different vectors detect the same fault with different probabilities. We develop test generation methods that account for these differences, and integer linear programming (ILP) formulations to optimize test sets.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/61584/1/smita_1.pd
    • …
    corecore