2,411 research outputs found

    SceneFlowFields: Dense Interpolation of Sparse Scene Flow Correspondences

    Full text link
    While most scene flow methods use either variational optimization or a strong rigid motion assumption, we show for the first time that scene flow can also be estimated by dense interpolation of sparse matches. To this end, we find sparse matches across two stereo image pairs that are detected without any prior regularization and perform dense interpolation preserving geometric and motion boundaries by using edge information. A few iterations of variational energy minimization are performed to refine our results, which are thoroughly evaluated on the KITTI benchmark and additionally compared to state-of-the-art on MPI Sintel. For application in an automotive context, we further show that an optional ego-motion model helps to boost performance and blends smoothly into our approach to produce a segmentation of the scene into static and dynamic parts.Comment: IEEE Winter Conference on Applications of Computer Vision (WACV), 201

    EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow

    Get PDF
    We propose a novel approach for optical flow estimation , targeted at large displacements with significant oc-clusions. It consists of two steps: i) dense matching by edge-preserving interpolation from a sparse set of matches; ii) variational energy minimization initialized with the dense matches. The sparse-to-dense interpolation relies on an appropriate choice of the distance, namely an edge-aware geodesic distance. This distance is tailored to handle occlusions and motion boundaries -- two common and difficult issues for optical flow computation. We also propose an approximation scheme for the geodesic distance to allow fast computation without loss of performance. Subsequent to the dense interpolation step, standard one-level variational energy minimization is carried out on the dense matches to obtain the final flow estimation. The proposed approach, called Edge-Preserving Interpolation of Correspondences (EpicFlow) is fast and robust to large displacements. It significantly outperforms the state of the art on MPI-Sintel and performs on par on Kitti and Middlebury

    Discontinuity preserving image registration for breathing induced sliding organ motion

    Get PDF
    Image registration is a powerful tool in medical image analysis and facilitates the clinical routine in several aspects. It became an indispensable device for many medical applications including image-guided therapy systems. The basic goal of image registration is to spatially align two images that show a similar region of interest. More speci�cally, a displacement �eld respectively a transformation is estimated, that relates the positions of the pixels or feature points in one image to the corresponding positions in the other one. The so gained alignment of the images assists the doctor in comparing and diagnosing them. There exist di�erent kinds of image registration methods, those which are capable to estimate a rigid transformation or more generally an a�ne transformation between the images and those which are able to capture a more complex motion by estimating a non-rigid transformation. There are many well established non-rigid registration methods, but those which are able to preserve discontinuities in the displacement �eld are rather rare. These discontinuities appear in particular at organ boundaries during the breathing induced organ motion. In this thesis, we make use of the idea to combine motion segmentation with registration to tackle the problem of preserving the discontinuities in the resulting displacement �eld. We introduce a binary function to represent the motion segmentation and the proposed discontinuity preserving non-rigid registration method is then formulated in a variational framework. Thus, an energy functional is de�ned and its minimisation with respect to the displacement �eld and the motion segmentation will lead to the desired result. In theory, one can prove that for the motion segmentation a global minimiser of the energy functional can be found, if the displacement �eld is given. The overall minimisation problem, however, is non-convex and a suitable optimisation strategy has to be considered. Furthermore, depending on whether we use the pure L1-norm or an approximation of it in the formulation of the energy functional, we use di�erent numerical methods to solve the minimisation problem. More speci�cally, when using an approximation of the L1-norm, the minimisation of the energy functional with respect to the displacement �eld is performed through Brox et al.'s �xed point iteration scheme, and the minimisation with respect to the motion segmentation with the dual algorithm of Chambolle. On the other hand, when we make use of the pure L1-norm in the energy functional, the primal-dual algorithm of Chambolle and Pock is used for both, the minimisation with respect to the displacement �eld and the motion segmentation. This approach is clearly faster compared to the one using the approximation of the L1-norm and also theoretically more appealing. Finally, to support the registration method during the minimisation process, we incorporate additionally in a later approach the information of certain landmark positions into the formulation of the energy functional, that makes use of the pure L1-norm. Similarly as before, the primal-dual algorithm of Chambolle and Pock is then used for both, the minimisation with respect to the displacement �eld and the motion segmentation. All the proposed non-rigid discontinuity preserving registration methods delivered promising results for experiments with synthetic images and real MR images of breathing induced liver motion
    corecore