12 research outputs found

    Reservoir of Diverse Adaptive Learners and Stacking Fast Hoeffding Drift Detection Methods for Evolving Data Streams

    Full text link
    The last decade has seen a surge of interest in adaptive learning algorithms for data stream classification, with applications ranging from predicting ozone level peaks, learning stock market indicators, to detecting computer security violations. In addition, a number of methods have been developed to detect concept drifts in these streams. Consider a scenario where we have a number of classifiers with diverse learning styles and different drift detectors. Intuitively, the current 'best' (classifier, detector) pair is application dependent and may change as a result of the stream evolution. Our research builds on this observation. We introduce the \mbox{Tornado} framework that implements a reservoir of diverse classifiers, together with a variety of drift detection algorithms. In our framework, all (classifier, detector) pairs proceed, in parallel, to construct models against the evolving data streams. At any point in time, we select the pair which currently yields the best performance. We further incorporate two novel stacking-based drift detection methods, namely the \mbox{FHDDMS} and \mbox{FHDDMS}_{add} approaches. The experimental evaluation confirms that the current 'best' (classifier, detector) pair is not only heavily dependent on the characteristics of the stream, but also that this selection evolves as the stream flows. Further, our \mbox{FHDDMS} variants detect concept drifts accurately in a timely fashion while outperforming the state-of-the-art.Comment: 42 pages, and 14 figure

    Heterogeneous ensemble selection for evolving data streams.

    Get PDF
    Ensemble learning has been widely applied to both batch data classification and streaming data classification. For the latter setting, most existing ensemble systems are homogenous, which means they are generated from only one type of learning model. In contrast, by combining several types of different learning models, a heterogeneous ensemble system can achieve greater diversity among its members, which helps to improve its performance. Although heterogeneous ensemble systems have achieved many successes in the batch classification setting, it is not trivial to extend them directly to the data stream setting. In this study, we propose a novel HEterogeneous Ensemble Selection (HEES) method, which dynamically selects an appropriate subset of base classifiers to predict data under the stream setting. We are inspired by the observation that a well-chosen subset of good base classifiers may outperform the whole ensemble system. Here, we define a good candidate as one that expresses not only high predictive performance but also high confidence in its prediction. Our selection process is thus divided into two sub-processes: accurate-candidate selection and confident-candidate selection. We define an accurate candidate in the stream context as a base classifier with high accuracy over the current concept, while a confident candidate as one with a confidence score higher than a certain threshold. In the first sub-process, we employ the prequential accuracy to estimate the performance of a base classifier at a specific time, while in the latter sub-process, we propose a new measure to quantify the predictive confidence and provide a method to learn the threshold incrementally. The final ensemble is formed by taking the intersection of the sets of confident classifiers and accurate classifiers. Experiments on a wide range of data streams show that the proposed method achieves competitive performance with lower running time in comparison to the state-of-the-art online ensemble methods

    Using Diversity Ensembles with Time Limits to Handle Concept Drift

    Get PDF
    While traditional supervised learning focuses on static datasets, an increasing amount of data comes in the form of streams, where data is continuous and typically processed only once. A common problem with data streams is that the underlying concept we are trying to learn can be constantly evolving. This concept drift has been of interest to researchers the last few years and there is a need for improved machine learning algorithms that are capable of dealing with concept drifts. A promising approach involves using an ensemble of a diverse set of classifiers. The constituent classifiers are re-trained when a concept drift is detected. Decisions regarding the number of classifiers to maintain and the frequency of re-training classifiers are critical factors that determine classification accuracy in the presence of concept drift. This dissertation systematically investigated these issues in order to develop an improved classifier for online ensemble learning. The impact of reducing the time requiring additional ensembles was studied using artificial and real world datasets. Findings from these studies revealed that in many cases the number of time steps additional ensembles are in memory can be reduced without sacrificing prequential accuracy. It was also found that this new ensemble approach performed well in the presence of false concept drift

    Process-Oriented Stream Classification Pipeline:A Literature Review

    Get PDF
    Featured Application: Nowadays, many applications and disciplines work on the basis of stream data. Common examples are the IoT sector (e.g., sensor data analysis), or video, image, and text analysis applications (e.g., in social media analytics or astronomy). With our work, we gather different approaches and terminology, and give a broad overview over the topic. Our main target groups are practitioners and newcomers to the field of data stream classification. Due to the rise of continuous data-generating applications, analyzing data streams has gained increasing attention over the past decades. A core research area in stream data is stream classification, which categorizes or detects data points within an evolving stream of observations. Areas of stream classification are diverse—ranging, e.g., from monitoring sensor data to analyzing a wide range of (social) media applications. Research in stream classification is related to developing methods that adapt to the changing and potentially volatile data stream. It focuses on individual aspects of the stream classification pipeline, e.g., designing suitable algorithm architectures, an efficient train and test procedure, or detecting so-called concept drifts. As a result of the many different research questions and strands, the field is challenging to grasp, especially for beginners. This survey explores, summarizes, and categorizes work within the domain of stream classification and identifies core research threads over the past few years. It is structured based on the stream classification process to facilitate coordination within this complex topic, including common application scenarios and benchmarking data sets. Thus, both newcomers to the field and experts who want to widen their scope can gain (additional) insight into this research area and find starting points and pointers to more in-depth literature on specific issues and research directions in the field.</p

    Machine Learning Methods for Diagnosis, Prognosis and Prediction of Long-term Treatment Outcome of Major Depression

    Get PDF
    abstract: Major Depression, clinically called Major Depressive Disorder, is a mood disorder that affects about one eighth of population in US and is projected to be the second leading cause of disability in the world by the year 2020. Recent advances in biotechnology have enabled us to collect a great variety of data which could potentially offer us a deeper understanding of the disorder as well as advancing personalized medicine. This dissertation focuses on developing methods for three different aspects of predictive analytics related to the disorder: automatic diagnosis, prognosis, and prediction of long-term treatment outcome. The data used for each task have their specific characteristics and demonstrate unique problems. Automatic diagnosis of melancholic depression is made on the basis of metabolic profiles and micro-array gene expression profiles where the presence of missing values and strong empirical correlation between the variables is not unusual. To deal with these problems, a method of generating a representative set of features is proposed. Prognosis is made on data collected from rating scales and questionnaires which consist mainly of categorical and ordinal variables and thus favor decision tree based predictive models. Decision tree models are known for the notorious problem of overfitting. A decision tree pruning method that overcomes the shortcomings of a greedy nature and reliance on heuristics inherent in traditional decision tree pruning approaches is proposed. The method is further extended to prune Gradient Boosting Decision Tree and tested on the task of prognosis of treatment outcome. Follow-up studies evaluating the long-term effect of the treatments on patients usually measure patients' depressive symptom severity monthly, resulting in the actual time of relapse upper bounded by the observed time of relapse. To resolve such uncertainty in response, a general loss function where the hypothesis could take different forms is proposed to predict the risk of relapse in situations where only an interval for time of relapse can be derived from the observed data.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Fast perceptron decision tree learning from evolving data streams

    Get PDF
    Abstract. Mining of data streams must balance three evaluation dimensions: accuracy, time and memory. Excellent accuracy on data streams has been obtained with Naive Bayes Hoeffding Trees—Hoeffding Trees with naive Bayes models at the leaf nodes—albeit with increased runtime compared to standard Hoeffding Trees. In this paper, we show that runtime can be reduced by replacing naive Bayes with perceptron classifiers, while maintaining highly competitive accuracy. We also show that accuracy can be increased even further by combining majority vote, naive Bayes, and perceptrons. We evaluate four perceptron-based learning strategies and compare them against appropriate baselines: simple perceptrons, Perceptron Hoeffding Trees, hybrid Naive Bayes Perceptron Trees, and bagged versions thereof. We implement a perceptron that uses the sigmoid activation function instead of the threshold activation function and optimizes the squared error, with one perceptron per class value. We test our methods by performing an evaluation study on synthetic and real-world datasets comprising up to ten million examples.

    Dynamic Data Mining: Methodology and Algorithms

    No full text
    Supervised data stream mining has become an important and challenging data mining task in modern organizations. The key challenges are threefold: (1) a possibly infinite number of streaming examples and time-critical analysis constraints; (2) concept drift; and (3) skewed data distributions. To address these three challenges, this thesis proposes the novel dynamic data mining (DDM) methodology by effectively applying supervised ensemble models to data stream mining. DDM can be loosely defined as categorization-organization-selection of supervised ensemble models. It is inspired by the idea that although the underlying concepts in a data stream are time-varying, their distinctions can be identified. Therefore, the models trained on the distinct concepts can be dynamically selected in order to classify incoming examples of similar concepts. First, following the general paradigm of DDM, we examine the different concept-drifting stream mining scenarios and propose corresponding effective and efficient data mining algorithms. • To address concept drift caused merely by changes of variable distributions, which we term pseudo concept drift, base models built on categorized streaming data are organized and selected in line with their corresponding variable distribution characteristics. • To address concept drift caused by changes of variable and class joint distributions, which we term true concept drift, an effective data categorization scheme is introduced. A group of working models is dynamically organized and selected for reacting to the drifting concept. Secondly, we introduce an integration stream mining framework, enabling the paradigm advocated by DDM to be widely applicable for other stream mining problems. Therefore, we are able to introduce easily six effective algorithms for mining data streams with skewed class distributions. In addition, we also introduce a new ensemble model approach for batch learning, following the same methodology. Both theoretical and empirical studies demonstrate its effectiveness. Future work would be targeted at improving the effectiveness and efficiency of the proposed algorithms. Meantime, we would explore the possibilities of using the integration framework to solve other open stream mining research problems
    corecore