34 research outputs found

    On Graduated Optimization for Stochastic Non-Convex Problems

    Full text link
    The graduated optimization approach, also known as the continuation method, is a popular heuristic to solving non-convex problems that has received renewed interest over the last decade. Despite its popularity, very little is known in terms of theoretical convergence analysis. In this paper we describe a new first-order algorithm based on graduated optimiza- tion and analyze its performance. We characterize a parameterized family of non- convex functions for which this algorithm provably converges to a global optimum. In particular, we prove that the algorithm converges to an {\epsilon}-approximate solution within O(1/\epsilon^2) gradient-based steps. We extend our algorithm and analysis to the setting of stochastic non-convex optimization with noisy gradient feedback, attaining the same convergence rate. Additionally, we discuss the setting of zero-order optimization, and devise a a variant of our algorithm which converges at rate of O(d^2/\epsilon^4).Comment: 17 page

    Speckle Noise Reduction via Nonconvex High Total Variation Approach

    Get PDF
    We address the problem of speckle noise removal. The classical total variation is extensively used in this field to solve such problem, but this method suffers from the staircase-like artifacts and the loss of image details. In order to resolve these problems, a nonconvex total generalized variation (TGV) regularization is used to preserve both edges and details of the images. The TGV regularization which is able to remove the staircase effect has strong theoretical guarantee by means of its high order smooth feature. Our method combines the merits of both the TGV method and the nonconvex variational method and avoids their main drawbacks. Furthermore, we develop an efficient algorithm for solving the nonconvex TGV-based optimization problem. We experimentally demonstrate the excellent performance of the technique, both visually and quantitatively

    Total Variation Image Restoration Method Based on Subspace Optimization

    Get PDF
    The alternating direction method is widely applied in total variation image restoration. However, the search directions of the method are not accurate enough. In this paper, one method based on the subspace optimization is proposed to improve its optimization performance. This method corrects the search directions of primal alternating direction method by using the energy function and a linear combination of the previous search directions. In addition, the convergence of the primal alternating direction method is proven under some weaker conditions. Thus the convergence of the corrected method could be easily obtained since it has same convergence with the primal alternating direction method. Numerical examples are given to show the performance of proposed method finally

    Image Reconstruction from Undersampled Confocal Microscopy Data using Multiresolution Based Maximum Entropy Regularization

    Full text link
    We consider the problem of reconstructing 2D images from randomly under-sampled confocal microscopy samples. The well known and widely celebrated total variation regularization, which is the L1 norm of derivatives, turns out to be unsuitable for this problem; it is unable to handle both noise and under-sampling together. This issue is linked with the notion of phase transition phenomenon observed in compressive sensing research, which is essentially the break-down of total variation methods, when sampling density gets lower than certain threshold. The severity of this breakdown is determined by the so-called mutual incoherence between the derivative operators and measurement operator. In our problem, the mutual incoherence is low, and hence the total variation regularization gives serious artifacts in the presence of noise even when the sampling density is not very low. There has been very few attempts in developing regularization methods that perform better than total variation regularization for this problem. We develop a multi-resolution based regularization method that is adaptive to image structure. In our approach, the desired reconstruction is formulated as a series of coarse-to-fine multi-resolution reconstructions; for reconstruction at each level, the regularization is constructed to be adaptive to the image structure, where the information for adaption is obtained from the reconstruction obtained at coarser resolution level. This adaptation is achieved by using maximum entropy principle, where the required adaptive regularization is determined as the maximizer of entropy subject to the information extracted from the coarse reconstruction as constraints. We demonstrate the superiority of the proposed regularization method over existing ones using several reconstruction examples
    corecore