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We address the problem of speckle noise removal.The classical total variation is extensively used in this field to solve such problem,
but thismethod suffers from the staircase-like artifacts and the loss of image details. In order to resolve these problems, a nonconvex
total generalized variation (TGV) regularization is used to preserve both edges and details of the images. The TGV regularization
which is able to remove the staircase effect has strong theoretical guarantee by means of its high order smooth feature. Our
method combines the merits of both the TGV method and the nonconvex variational method and avoids their main drawbacks.
Furthermore, we develop an efficient algorithm for solving the nonconvex TGV-based optimization problem. We experimentally
demonstrate the excellent performance of the technique, both visually and quantitatively.

1. Introduction

Images generated by coherent imaging modalities, for exam-
ple, synthetic aperture radar (SAR), ultrasound, and laser
imaging, inevitably come with multiplicative noise (also
known as speckle), due to the coherent nature of the scatter-
ing phenomena. The speckle noise seriously interferes with
the upper tasks, such as object recognition [1] and image
segmentation [2]. Due to the coherent nature of the image
acquisition process, in the speckle noise models, the noise
field is multiplied by (not added to) the original image,
and it is described by a non-Gaussian probability density
function, with Rayleigh and Gamma being common models
[3]. So it is signal independent, non-Gaussian, and spatially
dependent. Hence, speckle denoising is a very challenging
problem compared with additive Gaussian noise.

Speckle noise removal methods have been discussed in
many references. Popular methods include bilateral filtering
for despeckling [4], wavelet based despeckling approaches
[5], and nonlocal means (NL-means) [6]. We will focus on
the variational approach for speckle noise removal.

To the best of our knowledge, there exist several vari-
ational approaches devoted to speckle noise removal prob-
lem, which minimize some appropriate energy functionals,
composing a regularization term and a data fitting term.
The first total variation-based speckle noise removal method
(RLO-method) was presented by Osher et al. [7], which
used a constrained optimization approach with two Lagrange
multipliers. Aubert and Aujol [8] propose their speckle noise
removal method (AA method) in the framework of the
maximum a posteriori probability (MAP) estimation. In [9],
Huang et al. proposed a new total variation (TV) method
for speckle noise removal based on the Aubert-Aujol (AA)
method. Because of the nonconvexity of AA method, the
global solution is hard to find. To resolve this problem,
Bioucas-Dias and Figueiredo [10] apply the MAP estimation
method in the log domain and propose a convex speckle noise
removal method (BFmethod). In addition, Steidl and Teuber
[11] also propose a convex method (ST method), in which
the I-divergence is used as the fidelity term; the reason for
this is that the Euler-Lagrange equation of the ST method
is equivalent to that of the BF method in the sense of log
transform [11].
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The methods mentioned above have a common feature
that is using the convex TV regularization, which yields
piecewise smooth estimates adapted to the structure of the
underlying reflectance. Indeed, solutions of variational prob-
lemswithTV regularization admitmanydesirable properties,
most notably the appearance of sharp edges. However, the
regularization with TV also has the so-called staircasing
artifacts in the smooth image regions. To overcome the draw-
back, the total generalized variation (TGV) regularization
[12] also has been investigated in the recent work [13], which
incorporates the TGV penalty into the existing data fidelity
term for the speckle noise removal, and develops two novel
variational despeckling methods. TGV-based despeckling
method outperforms the traditional TVmethods by reducing
the staircasing artifacts.

Recently, the developments of nonconvexworld involving
a variety of applications show that nonconvex regularizer has
advantages over convex regularization for restoring images
with neat edges. Nikolova et al. [14] discuss the properties of
the nonconvex regularizer for removing additive noise and
then [15, 16] study ℓ

1
data fitting and concave regularization

for image recovery problem. Han et al. [17] apply nonconvex
TV regularizer to the speckle noise removal, which better
preserves edges of restored images compared to classical TV
regularizer-based methods. Ochs et al. [18] combine non-
convexity with total generalized variation for reducing the
additive noise, deconvolution, and some other applications.

In this study, we incorporate the nonconvex TGV penalty
into the existing data fidelity term for speckle removal and
develop a novel variation despeckling method. A nonconvex
TGV regularizer is used to make the whole regions of the
image efficiently smoothed while it is used to make the edges
well preserved. As demonstrated in our numerical experi-
ments, the nonconvex TGV-based despeckling method not
only outperforms the TGV methods (TGVSNR algorithm)
[13] by better preserving edges of images but also is far better
than the nonconvex TV-based method (NRSNR algorithm)
[17] by removing the staircasing artifacts.

The rest of this paper is organized as follows. In Section 2,
some related works are reviewed and discussed. In Section 3,
we present a brief review of nonconvex TGV. Then, the
new variational method for speckle removal is proposed. In
Section 4, a fast algorithm corresponding to the new method
is designed. Subsequently, Section 5 describes the experiment
results. In Section 6, the final conclusions are drawn.

2. Related Work and Discussion

Let 𝑓 ∈ 𝑅
𝑛

+
denote an 𝑛-pixel observed image, assumed to

be a sample of a random image 𝐹. It is known that 𝐹 can
be assumed to be the product of the underlying true image
intensity 𝑧 ∈ 𝑅𝑛

+
and the speckle noise 𝜂 ∈ 𝑅𝑛

+
:

𝐹
𝑖
= 𝑧
𝑖
𝜂
𝑖

for 𝑖 = 1 : 𝑛. (1)

The probability density function of 𝜂 for the 𝐿-look SAR
image is given by the following Gamma distribution:

𝑝 (𝜂) =
1

Γ (𝐿)
𝐿
𝐿
𝜂
𝐿−1

𝑒
−𝐿𝜂

, (2)

where Γ is the usual Gamma function. Several major TV-
based variational methods are presented below.

TheMAP criterion is applied to (1); Aubert and Aujol [8]
derived a new method (AA method):

𝑧
∗
= argmin

𝑧
{𝐿

𝑛

∑

𝑖=1

(log 𝑧
𝑖
+ 𝑓
𝑖
𝑧
−1

𝑖
) + 𝜆

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨∇𝑧𝑖
󵄨󵄨󵄨󵄨} , (3)

where 𝑧∗ denotes the despeckled result and 𝜆 > 0 denotes the
regularization parameter.

From the minimization problem (3), we can observe that
the global solution of the AA method is hard to find because
it has a nonconvex fidelity term. To resolve this problem, the
authors in [10] take logarithmic transformation to convert (1)
into an additive form:

log𝐹⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐺

= log 𝑧⏟⏟⏟⏟⏟⏟⏟

𝑈

+ log 𝜂⏟⏟⏟⏟⏟⏟⏟

𝑊

. (4)

For simplicity, the pixel subscript of (4) has been dropped.
The probability density of the random variable𝑊 = log 𝜂 is

𝑝
𝑊
(𝑤) = 𝑝

𝜂
(𝑒
𝑤
) 𝑒
𝑤
=

𝐿
𝐿

Γ (𝐿)
𝑒
𝐿𝑊

𝑒
−𝑒
𝑤

𝐿
,

𝑝
𝐺|𝑈

(𝑔 | 𝑢) = 𝑝
𝑊
(𝑔 − 𝑢) .

(5)

Then, according to conditional independence assumption
[10], the following equation is derived:

log𝑝
𝐺|𝑈

(𝑔 | 𝑢) =

𝑛

∑

𝑖=1

log𝑝
𝑊
(𝑔
𝑖
− 𝑢
𝑖
)

= 𝐶 − 𝐿

𝑛

∑

𝑖=1

(𝑢
𝑖
+ 𝑒
𝑔
𝑖
−𝑢
𝑖) ,

(6)

where 𝐶 is a constant. Using the MAP criterion, the restored
image of the BF method can be inferred by solving the
following variational problem:

𝑢
∗
= argmin

𝑢
{− log𝑝

𝐺|𝑈
(𝑔 | 𝑢) − log𝑝

𝑈
(𝑢)}

= argmin
𝑢

{𝐿

𝑛

∑

𝑖=1

(𝑢
𝑖
+ 𝑒
𝑔
𝑖
−𝑢
𝑖) + 𝜆

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨∇𝑢𝑖
󵄨󵄨󵄨󵄨} ,

𝑧
∗
= 𝑒
𝑢
∗

.

(7)

However, since the logarithmic transformation is nonlin-
ear, which results in luminance distortion of the image, to
avoid this undesirable defect, Steidl and Teuber [11] showed
that the classical I-divergence method given in (8) does
not require nonlinear transformation and shares the same
solution of method (7) theoretically:

𝑧
∗
= argmin

𝑢
{

𝑛

∑

𝑖=1

(𝑧
𝑖
− 𝑓
𝑖
log 𝑧
𝑖
) + 𝜆

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨∇𝑖𝑧
󵄨󵄨󵄨󵄨} . (8)
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3. Problem Formulation

In this section, we begin with a brief tour of nonconvex TGV
and then propose a new variational method based on it.

3.1. Nonconvex Total Generalized Variation. First, recall the
definition of the total generalized variation. For convenience,
we assume that Ω ⊂ 𝑅

𝑑 is a nonempty, open, and connected
set; here, 𝑑 ∈ 𝑍, 𝑑 ≥ 1, is a fixed space dimension. In this
paper, we have 𝑑 = 2 for the images.The TGV of order𝑚 [12]
and positive weights 𝛼 = (𝛼

0
, . . . , 𝛼

𝑚−1
) is defined as

TGV𝑚
𝛼
(𝑢)

= sup {∫
Ω

𝑢div𝑚𝜗𝑑𝑥 | 𝜗 ∈ 𝐶
𝑚

𝑐
(Ω, Sym𝑚 (𝑅𝑑)) ,

󵄩󵄩󵄩󵄩󵄩
div𝑙𝜗󵄩󵄩󵄩󵄩󵄩∞ ≤ 𝛼

𝑙
, 𝑙 = 0, . . . , 𝑚 − 1} ,

(9)

where Sym𝑚(𝑅𝑑) denotes the space of symmetric tensors of
order 𝑚 with arguments in 𝑅

𝑑. 𝐶𝑚
𝑐
(Ω, Sym𝑚(𝑅𝑑)) denotes

the vector space of compactly supported symmetric tensor
field. Note that TGV𝑚

𝛼
(𝑢) is a seminorm that equals 0 for all

polynomials of degree less than 𝑚. Consequently, the image
restoration with TGV regularization brings about piecewise
polynomial intensities.

Specifically, we use the second-order TGV based on the
above definition throughout the paper:

TGV2
𝛼
(𝑢)

= sup {∫
Ω

𝑢div2𝜗𝑑𝑥 | 𝜗 ∈ 𝐶
2

𝑐
(Ω, Sym2 (𝑅𝑑)) ,

󵄩󵄩󵄩󵄩󵄩
div𝑙𝜗󵄩󵄩󵄩󵄩󵄩∞ ≤ 𝛼

𝑙
, 𝑙 = 0, 1} .

(10)

Definition (10) is generalized to represent minimization
problem itself via Fenchel duality theory [12]:

TGV2
𝛼
(𝑢) = min

𝑢
𝛼
1
∫
Ω

|∇𝑢 − 𝜗| 𝑑𝑥 + 𝛼
0
∫
Ω

|Ψ (𝜗)| 𝑑𝑥.

(11)

Here, Ψ(𝜗) = (1/2)(∇𝜗 + ∇𝜗
𝑇
) denotes the symmetric

derivative. Such a definition provides a way of balancing
between the first and second derivatives of a function. More
details on TGV can be found in [12, 19].

Nonconvex variant of TGV, that is, nonconvex TGV,
is introduced [18] by Ochs et al. who put forward this
theory, which combines with total generalized variation and
nonconvex regulation:

NCTGV2
𝛼
(𝑢) = min

𝑢,𝜗

𝛼
1
(|∇𝑢 − 𝜗| + 𝜀)

𝑝
+ 𝛼
0
(|Ψ (𝜗)| + 𝜀)

𝑝
,

(12)

that is, the regularized 𝑝-norm, 0 < 𝑝 < 1. The nonconvex
regulation based upon the TGV can retain all the advantages
of both the TGV and nonconvex property. In particular, the

despeckling with nonconvex TGV regularization both can
lead to piecewise polynomial smoothness and can preserve
neat edges of the images. Experiment results in Section 5 can
illustrate these facts.

3.2. NewNonconvex VariationalMethod. Following theMAP
estimation process as BF method [10], we propose a novel
variational method based on NCTGV2

𝛼
(𝑢) for removing

speckle noise:

𝑢
∗
= argmin

𝑢
{𝐿

𝑛

∑

𝑖=1

(𝑢
𝑖
+ 𝑒
𝑔
𝑖
−𝑢
𝑖) +NCTGV2

𝛼
(𝑢)} ,

𝑧
∗
= 𝑒
𝑢
∗

.

(13)

Let the sum of data term and nonconvex TGV regulariza-
tion term in formula (13) denote the following:

𝑇 (𝑢) = 𝐿

𝑛

∑

𝑖=1

(𝑢
𝑖
+ 𝑒
𝑔
𝑖
−𝑢
𝑖) + 𝛼
1

𝑛

∑

𝑖=1

(
󵄨󵄨󵄨󵄨∇𝑢𝑖 − 𝜗

𝑖

󵄨󵄨󵄨󵄨 + 𝜀)
𝑝

+ 𝛼
0

𝑛

∑

𝑖=1

(
󵄨󵄨󵄨󵄨Ψ (𝜗
𝑖
)
󵄨󵄨󵄨󵄨 + 𝜀)
𝑝

.

(14)

The regularization term of formula (13) has the advantage
of protecting edges of images, but because of the nonconvex-
ity and nonlinearity of the energy function in method (13)
classical optimization algorithms cannot be directly used to
solve this problem. In the next section, we will design a new
fast iteration algorithm.

4. Explicit Numerical Scheme

In the following, to compute the minimizer of (13), we first
convert the unconstrained problem (13) into an equivalent
constrained one in order to resolve the equivalent prob-
lem into two subproblems by the fast augmented Lagrange
multiplier (ALM) method. For the first subproblem, as its
convexity, the Newton method can be used to solve it. As
the second subproblem is nonconvex, we use the iteratively
reweightedmethod for resolving the nonconvex subproblem.

4.1. The ALM Method. Through the introduction of an
auxiliary variable V ∈ 𝑅𝑛, we transform formula (13) to a con-
strained form:

min
𝑢,V,𝜗

{𝐿

𝑛

∑

𝑖=1

(𝑢
𝑖
+ 𝑒
𝑔
𝑖
−𝑢
𝑖) + 𝛼
1

𝑛

∑

𝑖=1

(
󵄨󵄨󵄨󵄨∇V𝑖 − 𝜗

𝑖

󵄨󵄨󵄨󵄨 + 𝜀)
𝑝

+ 𝛼
0

𝑛

∑

𝑖=1

(
󵄨󵄨󵄨󵄨Ψ (𝜗
𝑖
)
󵄨󵄨󵄨󵄨 + 𝜀)
𝑝

}

s.t. 𝑢 = V.

(15)

In the following, to compute the minimizers of formula
(15), we adopt the ALM algorithm because of its fast con-
vergence applicability for many problems; the “allowance”
variable 𝑟 ∈ 𝑅

𝑛 is merged it into the above objective
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function, which leads to solving the following minimization-
problem:

(𝑢̂, V̂, 𝜗)

= arg min
𝑢,V,𝜗

{𝐿

𝑛

∑

𝑖=1

(𝑢
𝑖
+ 𝑒
𝑔
𝑖
−𝑢
𝑖) + 𝛼
1

𝑛

∑

𝑖=1

(
󵄨󵄨󵄨󵄨∇V𝑖 − 𝜗

𝑖

󵄨󵄨󵄨󵄨 + 𝜀)
𝑝

+ 𝛼
0

𝑛

∑

𝑖=1

(
󵄨󵄨󵄨󵄨Ψ (𝜗
𝑖
)
󵄨󵄨󵄨󵄨 + 𝜀)
𝑝

+
𝜆

2

𝑛

∑

𝑖=1

(𝑢
𝑖
− V
𝑖
+ 𝑟
𝑖
)
2

} ,

𝑟
𝑘

𝑖
= 𝑟
𝑘−1

𝑖
+ 𝑢
𝑘

𝑖
− V𝑘
𝑖
.

(16)

The parameter 𝜆 of formulation (16) does not need
to be set large enough; it demonstrates that the ALM
method is more robust to the choice of parameters. With
regard to our nonconvex case, although there is no strict
proof to guarantee the convergence of our iteration process,
numerical experiments in Section 5will demonstrate that our
method can produce better denoising results than nonconvex
TV regularizer-based method and TGV regularizer-based
method.

To solve the minimization problem (16), we use the
alternating iteration algorithm. Firstly, we fix V and 𝜗 to
solve 𝑢, and then we fix 𝑢 to solve V and 𝜗. More precisely,
the alternating iteration algorithm is equivalent to iteratively
solving the following two subproblems:

𝑢̂ = argmin
𝑢

{𝐿

𝑛

∑

𝑖=1

(𝑢
𝑖
+ 𝑒
𝑔
𝑖
−𝑢
𝑖) +

𝜆

2

𝑛

∑

𝑖=1

(𝑢
𝑖
− V𝑘−1
𝑖

+ 𝑟
𝑘−1

𝑖
)
2

} ,

(17)

(V̂, 𝜗) = argmin
V,𝜗

{𝛼
1

𝑛

∑

𝑖=1

(
󵄨󵄨󵄨󵄨∇V𝑖 − 𝜗

𝑖

󵄨󵄨󵄨󵄨 + 𝜀)
𝑝

+ 𝛼
0

𝑛

∑

𝑖=1

(
󵄨󵄨󵄨󵄨Ψ(𝜗𝑖)

󵄨󵄨󵄨󵄨 + 𝜀)
𝑝

+
𝜆

2

𝑛

∑

𝑖=1

(𝑢
𝑖
− V𝑘−1
𝑖

+ 𝑟
𝑘−1

𝑖
)
2

} .

(18)

Let the first-order derivative of formula (17) be equal to
zero, leading to the following equation:

𝐿 (1 − 𝑒
𝑔
𝑖
−𝑢
𝑖) + 𝜆 (𝑢

𝑖
− V𝑘−1
𝑖

+ 𝑟
𝑘−1

𝑖
) = 0. (19)

The minimization problem can be solved by using the
Newton iteration of (19). For solving the nonconvex mini-
mization problem (18), we propose the iteratively reweighted
method.

4.2. The Iteratively Reweighted Method. Originally, the itera-
tively reweighted algorithm proceeds by iteratively solving 𝑙

1

problemswhich approximate the original problem [17, 20, 21],
which was proposed to improve the sparsity in 𝑙

1
regularized

compressed sensing problems, but it turns out that this
algorithm is also useful for computer vision applications.

For solving the optimization problem (18), we transform
it into the following equivalent energy minimization prob-
lem:

(V̂, 𝜗) = argmin
V,𝜗

{
𝜆

2

𝑛

∑

𝑖=1

(𝑢
𝑖
− V𝑘−1
𝑖

+ 𝑟
𝑘−1

𝑖
)
2

+

𝑛

∑

𝑖=1

𝛼
1
(𝑤
𝑘−1

𝑖

󵄨󵄨󵄨󵄨∇V𝑖 − 𝜗
𝑖

󵄨󵄨󵄨󵄨)

+

𝑛

∑

𝑖=1

𝛼
0
(𝑤
𝑘−1

𝑖

󵄨󵄨󵄨󵄨Ψ (𝜗
𝑖
)
󵄨󵄨󵄨󵄨)} ,

𝑤
𝑘

𝑖
=

𝑝

(
󵄨󵄨󵄨󵄨∇V
𝑘

𝑖

󵄨󵄨󵄨󵄨 + 𝜀)
1−𝑝

,

𝑤
𝑘

𝑖
=

𝑝

(
󵄨󵄨󵄨󵄨Ψ (𝜗
𝑘

𝑖
)
󵄨󵄨󵄨󵄨 + 𝜀)
1−𝑝

.

(20)

As the inner problem (20) is a convexminimization prob-
lem, it can be solved efficiently by the primal-dual algorithms
[22, 23]. In particular, primal-dual form of problem (20) is
derived by the duality principles:

min
V,𝜗

max
p∈𝑃,q∈𝑄

𝜆

2

𝑛

∑

𝑖=1

(𝑢
𝑖
− V𝑘−1
𝑖

+ 𝑟
𝑘−1

𝑖
)
2

+

𝑛

∑

𝑖=1

⟨∇V
𝑖
− 𝜗
𝑖
, p
𝑖
⟩

+

𝑛

∑

𝑖=1

⟨Ψ (𝜗
𝑖
) , q
𝑖
⟩ ,

(21)

where

𝑃 = {p
𝑖
= (𝑝
𝑖1
, 𝑝
𝑖2
) |

󵄩󵄩󵄩󵄩p𝑖
󵄩󵄩󵄩󵄩∞ ≤ 𝛼

1
𝑤
𝑖
} ,

𝑄 = {q
𝑖
= (

𝑞
𝑖11
, 𝑞
𝑖12

𝑞
𝑖21
, 𝑞
𝑖22

) |
󵄩󵄩󵄩󵄩q𝑖

󵄩󵄩󵄩󵄩∞ ≤ 𝛼
0
𝑤
𝑖
} .

(22)

The primal-dual algorithm for problem (21) reads as
follows.

Algorithm 1. The primal-dual algorithm for nonconvex TGV
denoising is as follows.

(1) Initialization

𝑔 = 𝑢 + 𝑟
0
, V0 = 𝑓, V0 = V0,

𝜗
0
, 𝜗
0

= 0, p
0
= 0, q

0
= 0,

𝜎, 𝜆, 𝜏, 𝛼
1
, 𝛼
0
,𝑀 > 0, 𝑙 = 0.

(23)

While 𝑙 < 𝑀 do
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(2) p𝑙+1 = Proj
𝑃
(p𝑙 + 𝜎(∇V𝑙 − 𝜗

𝑙

))

(3) q𝑙+1 = Proj
𝑄
(q𝑙 + 𝜎(Ψ(𝜗

𝑙

))

(4) V
0
= V, V = (V + 𝜏(div p + 𝜆𝑔))/(1 + 𝜏𝜆)

V = 2V − V
0

(5) 𝜗
0
= 𝜗, 𝜗 = 𝜗 + 𝜏(p + div

2
q)

𝜗 = 2𝜗 − 𝜗
0

end while.

Set the following:

Proj
𝑃
(p𝑙
𝑖
) =

p𝑙
𝑖

max (1, 󵄨󵄨󵄨󵄨p𝑙𝑖
󵄨󵄨󵄨󵄨 /𝛼1𝑤𝑖)

,

Proj
𝑄
(q𝑙
𝑖
) =

q𝑙
𝑖

max (1, 󵄨󵄨󵄨󵄨q𝑙𝑖
󵄨󵄨󵄨󵄨 /𝛼0𝑤𝑖)

,

(24)

and div
2
is negative conjugate of Ψ, div

2
= −Ψ
∗.

For the (outer) nonconvex problem, let (𝑢
𝑘,𝑙
) be the

sequence generated by the problem (20), where the index 𝑙
refers to the inner iterations for solving the convex problem
and 𝑘 to the outer iterations. According to Proposition 1 [18],
(𝐹(𝑢
𝑘,0
)) will be monotonically decreasing and provides a

natural stopping criterion for the inner and outer problem.
The inner iterations are stopped when 𝑙 > 𝑀, where

𝑀 is the maximal number of inner iterations; we set 𝑀 =

400, else, 700. Then, we stop the outer iterations as soon as

𝑇 (𝑢
𝑘,0
) − 𝑇 (𝑢

𝑘+1,0
)

𝑇 (𝑢0,0)
< 𝜇, (25)

where 𝜇 is a threshold indicating the required accuracy. In
our experiments, we use 𝜇 = 10

−6.
Integrating the ALM process and the iteratively

reweighted iteration, the whole speckle noise removal algo-
rithm can be found in Algorithm 2.

Algorithm 2. The nonconvex TGV regularizer-based speckle
noise removal algorithm is as follows.

(1) Initialization is as follows: give parameters 𝜎, 𝜏, 𝜆, 𝛼
1
,

𝛼
0
> 0, 𝑘 = 0;

initialize 𝑟0
𝑖
= 0, 𝑢

0

𝑖
= V0
𝑖
= log𝑓, p

0
= 0, q

0
= 0.

(2) Repeat.

(3) Apply Newtonmethod to solve for 𝑢𝑘
𝑖
by formula (19).

(4) Apply primal-dual method to solve for V𝑘
𝑖
, 𝜗
𝑘

𝑖
by

Algorithm 1.

(5) 𝑘 = 𝑘 + 1.

(6) Until a stopping criterion is satisfied,

final restored image 𝑧̂ = exp(𝑢̂).

5. Numerical Results

In this section, we report numerical experiments on speckle
reduction to validate the efficiency of the proposed method
with 10 test images whose sizes are all 256∗256 shown in
Figure 1, including six “standard” test images and four some
synthetic images used in [13, 17, 24]. Finally, we test three
real SAR images used in [13]. During the evaluation, we
compare the proposed algorithm with two recent speckle
noise removal algorithms which include NRSNR algorithms
[17] and TGVSNR algorithms [13].

The evaluating indicator is SNR which is measured
between noise-free and restored noisy images. If 𝑧̂ and 𝑧 are
the estimated and noise-free images and 𝜎

2

𝑧
is the average

variance of the noise-free image 𝑧, the SNR is defined as

SNR = 10 log
10
(

𝜎
2

𝑧

MSE
) , (26)

whereMSE is themean-square error which is given byMSE =

(1/𝑛)∑
𝑛

𝑖=1
(𝑧
𝑖
− 𝑧̂
𝑖
)
2.

All simulations listed here are implemented in Matlab
R2009a on a laptop equipped with 1.60GHz CPU and 4G
RAMmemory.

5.1. Choice of the Regularization Parameters. Some required
parameters 𝜎, 𝜏, 𝜆, 𝛼

1
, and 𝛼

0
need to be given to begin with

our nonconvexTGV regularization algorithm.Theparameter
𝜆 is used to approximate to the constraint 𝑢 = V in mode
(15). In all our experiments, we find the best 𝜆 of each image
from a search interval [5, 9]. It is worth noting that the impact
of parameter 𝜆 is not great; the choices of 𝜆 = 5 are proper
for most cases. The parameters 𝜎 and 𝜏 are used to make
the primal-dual algorithm’s converging. The two parameters
are set too small; the algorithm will be too slow; if the two
parameters are set too large, the algorithm will not be robust.
We find that 𝜎 = 𝜏 = 0.3 will yield good results empirically.
The parameters 𝛼

1
, 𝛼
0
in the primal-dual algorithm have a

strong impact on the denoising results. The adjustment of
these parameters not only is concerned with noise but also
depends on images. We have to turn them manually. We
search for the best 𝛼

1
of each image from a 0.5-step interval

[1.2, 6], and the best 𝛼
0
of each image from a 0.3-step interval

[0.6, 3]. As two parameters 𝛼
1
, 𝛼
0
act on the regularization

term, we can fix one of them to tune the other one. Generally,
the values of these two regularization parameters are set
smaller with the decreasing of the number of looks 𝐿.

5.2. Influence of the Parameters𝑝. Parameters𝑝 of nonconvex
TGV regularization term have an important influence on the
performance of the proposed algorithm. Experimental results
caused by the different parameters 𝑝 are not the same. We
test many images and obtain similar experimental result as in
Figure 2. The curves in Figure 2 are based on “House” image.
Final SNR of restoration images firstly increases and then
decreases with the increasing of 𝑝 value shown in Figure 2,
so 𝑝 value for all the experiments is set to 0.7.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 1: Ten different test images. (a) House. (b) Peppers. (c) Lena. (d) Livingroom. (e) Rem1. (f) Boat. (g) Cameraman. (h) Fields. (i) Nimes.
(j) Phantom.
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Figure 2: Change curve of parameters 𝑝 on SNR.

5.3. Results with Known Image. In this section, we measure
the despeckling capability on experimental speckled images
whose reference originals are known. Table 1 presents the
comparison with only two recent speckle noise removal
methods, because these two recent algorithms which include
NRSNR algorithms [17] and TGVSNR algorithms [13] are
superior to many results before obtained including the
algorithms of the AA method and the BF method. The best
SNR of different algorithms are listed in Table 1. From the
data in the table, we can find that for almost all the denoising
results the proposed algorithm achieves higher values of
SNR (averagely exceeding about 0.49 db over the TGVSNR
method and 0.53 db over the NRSNR method). Even for
the “worst” result, our algorithm yields comparable SNR
compared with the best values obtained from the latter two
methods. Consequently, we believe that the proposedmethod
can averagely perform better than the other two methods.
In Figures 3 and 4, we display four representative denoising
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(a)

(b)

(c)

(d)

Figure 3: Denoising results of different methods. (a) shows the noisy images. From left to right, the noise is indicated by 𝐿 = 3, 9, 15, 21,
respectively; from (b) to (d), the results are obtained by the proposed method, the TGVSNR method, and the NRSNR method, respectively.
Note that all of the denoising results are generated when they reach the highest SNR of their corresponding denoising methods.

results to manifest denoising effect and the edge-preserving
capability of the proposed method. From observation, we
can find that the images restored from the proposed method
(shown in Figure 3(b)) are better than those restored from
the TGVSNRmethod (shown in Figure 3(c)) and theNRSNR
method (shown in Figure 3(d)). As a matter of fact, in

Figure 3(d), we observe that severe staircasing artifacts occur
in the restored images of the NRSNR method. In some
ways, the TGVSNRmethod generates better denoising results
than the NRSNR method; particularly, staircasing artifacts
are weakened greatly. However, some slight residual noise
is visible in the restored images of the TGVSNR method.
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(a)

(b)

(c)

(d)

Figure 4: Local zoomed denoising results. From (a) to (d), the number of looks the denoising results refer to is indicated by 𝐿 = 3, 9, 15, 21,
respectively. In (a), (b), (c), and (d), from left to right, we list the clean image, the denoising result of the proposed method, the denoising
result of the TGVSNR method, and the denoising of the NRSNR method.

Compared with the NRSNR method and the TGVSNR
method, the proposed method generates better denoising
results; not only is the speckle noise well cleaned but also
the details of the images are well preserved. The above
arguments can be also verified from the amplification of
the despeckled images shown in Figure 4. From the local

zoomed results, we can take a closer look at the advantage
of our method more directly. The proposed method can
remove the staircasing artifacts better which exist in the
areas of the NRSNRmethod compared to TGVSNRmethod;
meanwhile, it maintains better denoising capability and neat
edges.
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(a)

(b)

(c)

(d)

Figure 5: Performance comparison of different algorithms on the real images. In (a), (b), and (c), from left to right, we list the speckled image,
the denoising result of the proposed method, the denoising result of the TGVSNR method, and the denoising of the NRSNR method. In (d),
we show the local zoomed results, each of which corresponds to the results shown in (c).

5.4. Results on Real SAR Images. In this subsection, we test
three real SAR images to observe the performance of the
proposed method. As the clean image is unknown, the corre-
sponding algorithms will be terminated when the algorithm

reaches the stopping criterion. All of the three methods
remove the speckle in homogeneous regions and preserve
edges well. By observation, the nonconvex TV-based NRSNR
method result as the last column in Figure 5 introduces visible
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Table 1: Quantitative denoising comparison among the proposed
method (𝑃 = 0.7), the TGVSNR method, and the NRSNR method.
The best values of SNR (db) of each row are displayed in bold.

Image 𝐿

Noise
index

Proposed
method TGVSNR NRSNR

SNR SNR SNR SNR

House

3 −3.46 12.15 11.18 10.80
9 1.26 14.65 13.92 13.74
15 3.49 15.81 15.25 15.17
21 4.96 16.79 16.15 16.04

Livingroom

3 −5.10 7.63 7.28 6.65
9 −0.33 9.72 9.43 9.05
15 3.37 10.75 10.53 10.30
21 1.89 11.46 11.29 11.06

Lena

3 −2.72 10.65 10.13 9.72
9 2.06 13.35 12.73 12.48
15 4.26 14.46 14.01 13.82
21 5.72 15.44 14.89 14.69

Cameraman

3 −1.49 11.27 11.05 11.16
9 3.25 13.87 13.39 13.71
15 5.47 15.02 14.60 14.91
21 6.95 15.86 15.40 15.75

Boat

3 −4.16 8.44 8.12 7.80
9 0.59 10.38 10.11 10.25
15 2.81 11.60 11.47 11.56
21 4.28 12.40 12.24 12.40

Nimes

3 −3.36 4.37 3.96 4.02
9 1.40 6.80 6.26 6.26
15 3.64 8.03 7.56 7.53
21 5.09 9.00 8.45 8.42

Phantom

3 3.62 12.38 10.72 12.08
9 8.32 16.67 14.51 16.09
15 10.53 18.76 16.63 18.28
21 11.96 20.41 17.92 19.61

Fields

3 −2.56 10.38 10.08 9.50
9 2.22 12.07 11.90 11.56
15 4.42 13.06 12.89 12.68
21 5.87 13.85 13.56 13.41

Peppers

3 −2.88 11.46 10.90 10.07
9 10.07 13.96 13.57 13.01
15 4.09 15.05 14.86 14.40
21 5.56 16.03 15.69 15.21

Rem1

3 −2.61 8.18 7.97 7.91
9 2.15 10.47 10.22 10.37
15 4.38 11.70 11.47 11.65
21 5.82 12.53 12.30 12.47

staircasing artifacts; we can find that the details of the images
restored by ourmethod are clearer than those of the TGVSNR
method and theNRSNRmethod. It further demonstrates that

the proposed nonconvex TGV regularizer-based method can
better preserve details of images compared to the other two
methods.

6. Conclusions

In this paper, we propose a novel despeckling variation
method based on nonconvex TGV regularization, and an
efficient solving algorithm originated from the ALM iteration
and the iteratively reweighted primal-dual method is used
in our method. Numerical experiments demonstrate that
the proposed denoising method based on the nonconvex
TGV regularizer shows better performance than nonconvex
TV regularizer-based method and TGV regularizer-based
method in the ways of preserving the details and edges of
images.

In addition, our proposed algorithm is not perfect; one
drawback is that its running time is longer than the other
compared algorithms, so more rapid algorithm is necessary
to be hope for in the future.
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