1,604 research outputs found

    Low rank methods for optimizing clustering

    Get PDF
    Complex optimization models and problems in machine learning often have the majority of information in a low rank subspace. By careful exploitation of these low rank structures in clustering problems, we find new optimization approaches that reduce the memory and computational cost. We discuss two cases where this arises. First, we consider the NEO-K-Means (Non-Exhaustive, Overlapping K-Means) objective as a way to address overlapping and outliers in an integrated fashion. Optimizing this discrete objective is NP-hard, and even though there is a convex relaxation of the objective, straightforward convex optimization approaches are too expensive for large datasets. We utilize low rank structures in the solution matrix of the convex formulation and use a low-rank factorization of the solution matrix directly as a practical alternative. The resulting optimization problem is non-convex, but has a smaller number of solution variables, and can be locally optimized using an augmented Lagrangian method. In addition, we consider two fast multiplier methods to accelerate the convergence of the augmented Lagrangian scheme: a proximal method of multipliers and an alternating direction method of multipliers. For the proximal augmented Lagrangian, we show a convergence result for the non-convex case with bound-constrained subproblems. When the clustering performance is evaluated on real-world datasets, we show this technique is effective in finding the ground-truth clusters and cohesive overlapping communities in real-world networks. The second case is where the low-rank structure appears in the objective function. Inspired by low rank matrix completion techniques, we propose a low rank symmetric matrix completion scheme to approximate a kernel matrix. For the kernel k-means problem, we show empirically that the clustering performance with the approximation is comparable to the full kernel k-means

    Balancing Design Options with Sherpa

    Get PDF
    Application specific processors offer the potential of rapidly designed logic specifically constructed to meet the performance and area demands of the task at hand. Recently, there have been several major projects that attempt to automate the process of transforming a predetermined processor configuration into a low level description for fabrication. These projects either leave the specification of the processor to the designer, which can be a significant engineering burden, or handle it in a fully automated fashion, which completely removes the designer from the loop. In this paper we introduce a technique for guiding the design and optimization of application specific processors. The goal of the Sherpa design framework is to automate certain design tasks and provide early feedback to help the designer navigate their way through the architecture design space. Our approach is to decompose the overall problem of choosing an optimal architecture into a set of sub-problems that are, to the first order, independent. For each subproblem, we create a model that relates performance to area. From this, we build a constraint system that can be solved using integer-linear programming techniques, and arrive at an ideal parameter selection for all architectural components. Our approach only takes a few minutes to explore the design space allowing the designer or compiler to see the potential benefits of optimizations rapidly. We show that the expected performance using our model correlates strongly to detailed pipeline simulations, and present results showing design tradeoffs for several different benchmarks

    Unsupervised and semi-supervised fuzzy clustering with multiple kernels.

    Get PDF
    For real-world clustering tasks, the input data is typically not easily separable due to the highly complex data structure or when clusters vary in size, density and shape. Recently, kernel-based clustering has been proposed to perform clustering in a higher-dimensional feature space spanned by embedding maps and corresponding kernel functions. Although good results were obtained using the Gaussian kernel function, its performance depends on the selection of the scaling parameter among an extensive range of possibilities. This step is often heavily influenced by prior knowledge about the data and by the patterns we expect to discover. Unfortunately, it is often unclear which kernels are more suitable for a particular task. The problem is aggravated for many real-world clustering applications, in which the distributions of the different clusters in the feature space exhibit large variations. Thus, in the absence of a priori knowledge, a single kernel selected from a predefined group is sometimes insufficient to represent the data. One way to learn optimal scaling parameters is through an exhaustive search of one optimal scaling parameter for each cluster. However, this approach is not practical since it is computationally expensive, especially when the data includes a large number of clusters and when the dynamic range of possible values of the scaling parameters is large. Moreover, the evaluation of the resulting partition in order to select the optimal parameters is not an easy task. To overcome the above drawbacks, we introduce two novel fuzzy clustering techniques that use Multiple Kernel Learning to provide an elegant solution for parameter selection. The Fuzzy C-Means with Multiple Kernels algorithm (FCMK) simultaneously finds the optimal partition and the cluster-dependent kernel combination weights that reflect the intrinsic structure of the data. The Relational Fuzzy Clustering with Multiple Kernels (RFCMK) learns the kernel combination weights by optimizing the relational dissimilarities. Consequently, the learned kernel combination weights reflect the relative density, size, and position of each cluster with respect to the other clusters. We also extended FCMK and RFCMK to the semi-supervised paradigms. We show that the incorporation of prior knowledge in the unsupervised clustering task in the form of a small set of constraints on which instances should or should not reside in the same cluster, guides the unsupervised approaches to a better partitioning of the data and avoid local minima, especially for high dimensional real world data. All of the proposed algorithms are optimized iteratively by dynamically updating the partition and the kernel combination weights in each iteration. This makes these algorithms simple and fast. Moreover, our algorithms are formulated to work on both vector and relational data. This makes them applicable to data where objects cannot be represented by vectors or when clusters of similar objects cannot be represented efficiently by a single prototype. We also introduced two relational fuzzy clustering with multiple kernel algorithms for large data to deal with the scalability issue of RFCMK. The random sample and extend RFCMK (rseRFCMK) computes cluster prototypes from a smaller sample of randomly selected objects, and then extends the partition to the remainder of the data. The single pass RFCMK (spRFCMK) sequentially loads manageable sized chunks, clustering the chunks in a single pass, and then combining the results from each chunk. Our extensive experiments show that RFCMK and SS-RFCMK outperform existing algorithms. In particular, we show that when data include clusters with various intrinsic structures and densities, learning kernel weights that vary over clusters is crucial in obtaining a good partition

    A Study of recent classification algorithms and a novel approach for biosignal data classification

    Get PDF
    Analyzing and understanding human biosignals have been important research areas that have many practical applications in everyday life. For example, Brain Computer Interface is a research area that studies the connection between the human brain and external systems by processing and learning the brain signals called Electroencephalography (EEG) signals. Similarly, various assistive robotics applications are being developed to interpret eye or muscle signals in humans in order to provide control inputs for external devices. The efficiency for all of these applications depends heavily on being able to process and classify human biosignals. Therefore many techniques from Signal Processing and Machine Learning fields are applied in order to understand human biosignals better and increase the efficiency and success of these applications. This thesis proposes a new classifier for biosignal data classification utilizing Particle Swarm Optimization Clustering and Radial Basis Function Networks (RBFN). The performance of the proposed classifier together with several variations in the technique is analyzed by utilizing comparisons with the state of the art classifiers such as Fuzzy Functions Support Vector Machines (FFSVM), Improved Fuzzy Functions Support Vector Machines (IFFSVM). These classifiers are implemented on the classification of same biological signals in order to evaluate the proposed technique. Several clustering algorithms, which are used in these classifiers, such as K-means, Fuzzy c-means, and Particle Swarm Optimization (PSO), are studied and compared with each other based on clustering abilities. The effects of the analyzed clustering algorithms in the performance of Radial Basis Functions Networks classifier are investigated. Strengths and weaknesses are analyzed on various standard and EEG datasets. Results show that the proposed classifier that combines PSO clustering with RBFN classifier can reach or exceed the performance of these state of the art classifiers. Finally, the proposed classification technique is applied to a real-time system application where a mobile robot is controlled based on person\u27s EEG signal
    corecore