
Copyright

by

Joyce Jiyoung Whang

2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/322358786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Dissertation Committee for Joyce Jiyoung Whang

certifies that this is the approved version of the following dissertation:

Overlapping Community Detection in Massive Social

Networks

Committee:

Inderjit S. Dhillon, Supervisor

Kristen Grauman

Raymond J. Mooney

Keshav Pingali

David F. Gleich

Overlapping Community Detection in Massive Social

Networks

by

Joyce Jiyoung Whang, B.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2015

Dedicated to my parents

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Professor

Inderjit Dhillon for his knowledgeable advice, valuable discussions, and constant

support. Professor Dhillon’s expertise and deep insight enabled me to complete

this thesis. Professor Dhillon has encouraged me to explore diverse research ideas

and has always guided me towards better research directions. I believe Professor

Dhillon has played the most important role in making my Ph.D. life worthwhile and

memorable.

I also would like to thank Professor David Gleich at Purdue University who

has provided good motivation for my first paper on overlapping community detec-

tion. Professor Gleich’s suggestions and numerous discussions have contributed to

improving the quality and the presentation of my work. It was a great pleasure to

work with Professor Gleich.

I am also grateful to my other committee members, Professor Kristen Grau-

man, Professor Raymond Mooney, and Professor Keshav Pingali for their insightful

discussions and valuable comments.

I also thank my labmates and co-authors. I want to thank Nagarajan Natara-

jan for being a good friend and kindly helping me whenever I need help, Xin Sui

for his kind help and giving me happy memories of my first paper at UT Austin,

Piyush Rai for giving me a chance to think about new ideas in stochastic blockmod-

els, Yangyang Hou at Purdue University for being a good collaborator and having

v

good discussions, David Inouye for giving me useful comments on my presentations,

and Andrew Lenharth for helping me to implement parallel graph mining algorithms.

Also, I thank my Korean friends in the CS and ECE departments for letting me

have such a great time in Austin.

Finally, I would like to thank my parents for their love and warm support. I

dedicate this thesis to my parents.

vi

Overlapping Community Detection in Massive Social

Networks

Publication No.

Joyce Jiyoung Whang, Ph.D.

The University of Texas at Austin, 2015

Supervisor: Inderjit S. Dhillon

Massive social networks have become increasingly popular in recent years. Com-

munity detection is one of the most important techniques for the analysis of such

complex networks. A community is a set of cohesive vertices that has more connec-

tions inside the set than outside. In many social and information networks, these

communities naturally overlap. For instance, in a social network, each vertex in a

graph corresponds to an individual who usually participates in multiple communi-

ties. In this thesis, we propose scalable overlapping community detection algorithms

that effectively identify high quality overlapping communities in various real-world

networks.

We first develop an efficient overlapping community detection algorithm us-

ing a seed set expansion approach. The key idea of this algorithm is to find good

seeds and then greedily expand these seeds using a personalized PageRank cluster-

ing scheme. Experimental results show that our algorithm significantly outperforms

other state-of-the-art overlapping community detection methods in terms of run

time, cohesiveness of communities, and ground-truth accuracy.

vii

To develop more principled methods, we formulate the overlapping commu-

nity detection problem as a non-exhaustive, overlapping graph clustering problem

where clusters are allowed to overlap with each other, and some nodes are allowed

to be outside of any cluster. To tackle this non-exhaustive, overlapping clustering

problem, we propose a simple and intuitive objective function that captures the

issues of overlap and non-exhaustiveness in a unified manner. To optimize the ob-

jective, we develop not only fast iterative algorithms but also more sophisticated

algorithms using a low-rank semidefinite programming technique. Our experimen-

tal results show that the new objective and the algorithms are effective in finding

ground-truth clusterings that have varied overlap and non-exhaustiveness.

We extend our non-exhaustive, overlapping clustering techniques to co-clustering

where the goal is to simultaneously identify a clustering of the rows as well as the

columns of a data matrix. As an example application, consider recommender sys-

tems where users have ratings on items. This can be represented by a bipartite

graph where users and items are denoted by two different types of nodes, and the

ratings are denoted by weighted edges between the users and the items. In this case,

co-clustering would be a simultaneous clustering of users and items. We propose a

new co-clustering objective function and an efficient co-clustering algorithm that is

able to identify overlapping clusters as well as outliers on both types of the nodes in

the bipartite graph. We show that our co-clustering algorithm is able to effectively

capture the underlying co-clustering structure of the data, which results in boosting

the performance of a standard one-dimensional clustering.

Finally, we study the design of parallel data-driven algorithms, which enables

us to further increase the scalability of our overlapping community detection algo-

rithms. Using PageRank as a model problem, we look at three algorithm design axes:

work activation, data access pattern, and scheduling. We investigate the impact of

different algorithm design choices. Using these design axes, we design and test a va-

viii

riety of PageRank implementations finding that data-driven, push-based algorithms

are able to achieve a significantly superior scalability than standard PageRank im-

plementations. The design choices affect both single-threaded performance as well

as parallel scalability. The lessons learned from this study not only guide efficient

implementations of many graph mining algorithms but also provide a framework for

designing new scalable algorithms, especially for large-scale community detection.

ix

Contents

Acknowledgments v

Abstract vii

List of Tables xiv

List of Figures xvii

Chapter 1 Introduction 1

Chapter 2 Personalized PageRank-based Overlapping Community De-

tection 6

2.1 Preliminaries . 8

2.1.1 Problem Statement . 8

2.1.2 Measures of Cluster Quality 9

2.1.3 Graph Clustering and Weighted Kernel k-means 9

2.1.4 Datasets . 10

2.2 Overlapping Community Detection Using Neighborhood-Inflated Seed

Expansion . 12

2.2.1 Filtering Phase . 13

2.2.2 Seeding Phase . 16

2.2.3 Seed Expansion Phase . 18

x

2.2.4 Propagation Phase . 21

2.3 Related Work . 24

2.4 Experimental Results . 26

2.4.1 Graph Coverage . 26

2.4.2 Importance of Neighborhood-Inflation 28

2.4.3 Community Quality Using Conductance 30

2.4.4 Community Quality via Ground-truth 31

2.4.5 Comparison of Running Times 33

2.4.6 Varying the Number of Communities 34

2.5 Discussion . 35

Chapter 3 A Unified Framework of Non-exhaustive, Overlapping Clus-

tering 36

3.1 Non-exhaustive, Overlapping k-means 38

3.1.1 k-means Clustering . 38

3.1.2 An Intuitive, but Problematic, Extension 39

3.1.3 The NEO-K-Means Objective 40

3.1.4 The NEO-K-Means Algorithm 42

3.1.5 Parameter Selection . 44

3.1.6 Weighted Kernel NEO-K-Means 46

3.2 Graph Clustering using NEO-K-Means 47

3.2.1 Graph Clustering via Normalized Cut 47

3.2.2 Extending Graph Cut Objectives to Non-exhaustive, Overlap-

ping Clustering . 48

3.2.3 Equivalence of the Objectives 49

3.2.4 Algorithm . 49

3.3 Related Work . 51

3.4 Experimental Results . 52

xi

3.4.1 Vector Data . 52

3.4.2 Community Detection in Graph Data 55

Chapter 4 Low-Rank Semidefinite Programming for Non-exhaustive,

Overlapping Clustering 58

4.1 Low-Rank Factorizations of SDPs . 61

4.2 An SDP for NEO-K-Means . 62

4.3 A Low-Rank SDP for NEO-K-Means 65

4.3.1 Solving the NEO-K-Means Low-Rank SDP 66

4.3.2 Rounding Procedure . 68

4.3.3 Practical Improvements . 69

4.4 Related Work . 70

4.5 Experimental Results . 70

4.5.1 Algorithmic Validation . 71

4.5.2 Motivating Example . 72

4.5.3 Data Clustering . 73

4.5.4 Overlapping Community Detection 75

4.6 Further Extension: Fast Multiplier Methods 78

Chapter 5 Non-exhaustive, Overlapping Co-clustering 80

5.1 Preliminaries . 81

5.1.1 Minimum Sum-Squared Residue Co-Clustering 81

5.1.2 Revisit of the NEO-K-Means Objective 83

5.2 The NEO-Co-Clustering Objective 83

5.3 The NEO-Co-Clustering Algorithm 87

5.3.1 Convergence Analysis . 89

5.3.2 Illustrative Example . 91

5.4 Related Work . 92

xii

5.5 Experimental Results . 92

5.6 Future Work . 95

Chapter 6 Design of Parallel Data-driven Algorithms: Case Study

with Scalable Data-driven PageRank 96

6.1 Work Activation . 97

6.1.1 Topology-driven PageRank 98

6.1.2 Basic Data-driven PageRank 99

6.2 Data Access Pattern . 102

6.2.1 Pull-based PageRank . 102

6.2.2 Pull-Push-based PageRank 103

6.2.3 Push-based PageRank . 104

6.3 Scheduling . 105

6.4 Related Work . 107

6.5 Experimental Results . 108

6.5.1 Experimental Setup . 108

6.5.2 Datasets . 108

6.5.3 Results . 109

6.6 Discussion . 114

6.7 Future Work . 115

Chapter 7 Conclusions 116

Bibliography 119

xiii

List of Tables

2.1 Summary of real-world networks. 10

2.2 Biconnected core and the detached graph (in the last column, LCC

refers to the largest connected component). 15

2.3 Average normalized cut values before & after propagation. Theorem

2 shows this should decrease. 24

2.4 Returned number of clusters and graph coverage of each algorithm . 27

2.5 F1 and F2 measures. nise with “spread hubs” seeding strategy achieves

the highest F1 and F2 scores. 32

2.6 Running times of different methods on our test networks. 33

2.7 F1 measures with different numbers of communities. 34

2.8 AUC of conductance-vs-coverage with different numbers of commu-

nities. Lower AUC indicates better communities. 34

3.1 Vector datasets. 52

3.2 F1 scores on vector datasets. NEO-K-Means (the last column) achieves

the highest F1 score across all the datasets while the performance of

other existing algorithms is not consistent across all the datasets. . . 53

3.3 Graph datasets . 56

xiv

3.4 Average normalized cut of each algorithm on large real-world net-

works. Lower normalized cut indicates better clustering. NEO-K-

Means achieves the lowest normalized cut on all the datasets. 56

3.5 F1 score of each algorithm on Amazon and DBLP. NEO-K-Means

shows the highest F1 score on Amazon, and comparable F1 score

with nise on DBLP. 57

3.6 Average normalized cut and F1 score of NEO-K-Means with different

α and β on Amazon dataset. 57

4.1 A summary of the notation used in the NEO-K-Means problem, the

final assignment, and the SDP and low-rank approximations. 62

4.2 Comparison of SDP and LRSDP (objective value and run time). The

small differences between the objective values are the result of differ-

ences in solution tolerances and precision in the sub-problems. . . . 71

4.3 Real-world vector datasets. 73

4.4 Comparison of NEO-K-Means objective function values. 74

4.5 F1 scores on real-world vector datasets. 75

4.6 Real-world network datasets. 76

4.7 Average normalized cut of the iterative multilevel NEO-K-Means and

LRSDP . 77

4.8 AUC of conductance-vs-graph coverage 78

5.1 F1 scores on YEAST dataset. 94

5.2 MovieLens datasets . 94

5.3 F1 scores on MovieLens datasets. 95

6.1 Summary of algorithm design choices 108

6.2 Input Graphs . 109

6.3 The number of completed tasks (unit: 106) 111

xv

6.4 Run time of different PageRank implementations on the pld dataset 113

xvi

List of Figures

2.1 Degree distributions of real-world networks – the degree distributions

follow a power-law. 11

2.2 Overview of nise. nise consists of four main phases: filtering, seed-

ing, seed expansion, and propagation. 12

2.3 Biconnected core, whiskers, and bridges – grey region indicates the

biconnected core where vertices are densely connected to each other,

and green components indicate whiskers. Red edges indicate bridges

which connect the biconnected core and the whiskers. 14

2.4 Importance of neighborhood inflation – there is a large performance

gap between singleton seeds and neighborhood-inflated seeds for all

the seeding strategies. Neighborhood inflation plays a critical role

in the success of nise. When neighborhood-inflated seeds are used,

“graclus centers” and “spread hubs” seeding strategies significantly

outperform other seeding strategies. 28

2.5 AUC of Conductance-vs-coverage – lower bar indicates better commu-

nities. nise outperforms Demon, Oslom, and Bigclam. Within nise,

“graclus centers” and “spread hubs” seeding strategies are better than

other seeding strategies, and the Fiedler PPR produces slightly better

communities than the standard PPR. 30

xvii

3.1 (a) Two ground-truth clusters are generated (n=1,000, α=0.1, β=0.005).

Green points indicate overlap between the clusters, and black points indicate

outliers. See Chapter 3.4 for details. (b) Our first extension of k-means

objective function defined in (3.2) makes too many outlier assignments and

fails to recover the ground-truth. (c) The NEO-K-Means objective defined in

(3.3) adds an explicit term for non-exhaustiveness that enables it to correctly

detect the outliers and find natural overlapping clustering structure which

is very similar to the ground-truth clusters (α and β are automatically

estimated by the heuristics discussed in Chapter 3.1.5). 41

3.2 Clustering result of NEO-K-Means on Karate Club network. NEO-K-

Means is able to reveal the natural underlying overlapping structure

of the network. 55

4.1 A synthetic study of overlapping community detection on a Watts-

Strogatz cycle graph where each point should be assigned to two clus-

ters: (a) an illustration of a portion of the cycle with dashed ‘noise’

edges showing the disconnected points measure (which is 3); (b) &

(c) the results of normalized cut and the number of disconnected

points on graphs with 100 nodes returned by our new LRSDP pro-

cedure compared with two variations of our previous “neo” iterative

algorithms. 60

xviii

4.2 The output of NEO-K-Means algorithm with two different initial-

ization methods on two synthetic datasets. (a) & (b) On a simple

dataset, NEO-K-Means can easily recover the ground-truth clusters

with k-means or LRSDP initialization. (c)–(f) LRSDP initialization

allows the NEO-K-Means algorithm to consistently produce a reason-

able clustering structure whereas k-means initialization sometimes (4

times out of 10 trials) leads to a failure in recovering the underlying

clustering structure. 72

4.3 Visualization of the clustering result of LRSDP on ‘dolphins’ network.

Blue nodes only belong to cluster 1, red nodes only belong to cluster

2, and green nodes belong to both of the clusters. 76

5.1 Given a small data matrix X ∈ R4×5 and the assignment matrices for

row & column clusterings U & V , the contribution of an entry x21

to the NEO-Co-Clustering objective in (5.4) is determined by f(xr2)

and g(xc1). Note that xr2 ∈ Cr1 , xr2 ∈ Cr2 (xr2 ∈ R5), xc1 ∈ Cc1, xc1 ∈ Cc2
(xc1 ∈ R4). 85

5.2 NEO-Co-Clustering objective values defined in (5.4) for four different

co-clustering results . 86

5.3 The progress of the NEO-Co-Clustering algorithm on the small X

presented in (5.5) of Chapter 5.2. 91

5.4 The NEO-CC algorithm monotonically decreases the NEO-Co-Clustering

objective values. 93

6.1 Topology-driven PageRank . 99

6.2 Data-driven PageRank . 99

6.3 Pull-Push-based PageRank . 104

6.4 Push-based PageRank . 104

xix

6.1 Run time, scalability and speedup. Our data-driven, push-based

PageRank achieves the best speedup. 110

xx

Chapter 1

Introduction

Community detection is one of the most important and fundamental tasks in

network analysis. Given a network, a community is defined to be a set of cohesive

nodes that has more connections inside the set than outside. Since a network can be

modelled as a graph with vertices and edges, community detection can be thought

as a graph clustering problem where each community corresponds to a cluster in

the graph. The goal of traditional graph clustering algorithms (e.g., Metis [46],

Graclus [32]) is to partition a graph such that every node belongs to exactly one

cluster. However, in many social and information networks, nodes participate in

multiple communities. For instance, in a social network, nodes represent individuals

and edges represent social interactions between the individuals. In this setting, a

node’s communities can be interpreted as its social circles. Thus, it is likely that

a node belongs to multiple communities, i.e., communities naturally overlap. To

find these communities, we study the problem of overlapping community detection

where communities are allowed to overlap with each other and some nodes do not

belong to any cluster.

There are many practical applications of overlapping community detection.

For example, one interesting problem in network analysis is information propaga-

1

tion where the goal is to analyze how information flows through the network. When

certain information is given to a set of nodes in the network, the information will

be gradually propagated through the network. The speed of information propaga-

tion depends on the influence of the nodes that deliver the information. Intuitively,

if nodes are placed on the overlapped region between two different communities,

then the information can be quickly delivered to both of the communities. As a

result, in marketing, for example, when a company wants to maximize the effect of

advertisement by offering some special promotions to a certain set of people, they

might target the nodes that are placed on the overlapped region between commu-

nities. Also, in bioinformatics, mining gene networks is an important task. In a

gene network, each community corresponds to a functional class. In this setting,

finding overlapping communities corresponds to finding genes that participate in dif-

ferent functional classes. Other than these examples, there are many other different

practical applications of overlapping community detection in various disciplines.

In this thesis, we propose scalable overlapping community detection algo-

rithms that effectively identify high quality overlapping communities in various real-

world networks.

We first propose an efficient overlapping community detection algorithm us-

ing a seed expansion approach in Chapter 2. The key idea of this algorithm is to

find good seeds and then greedily expand these seeds based on a community metric.

Within this seed expansion method, we investigate the problem of how to determine

good seed nodes in a graph. In particular, we develop new seeding strategies for

a personalized PageRank clustering scheme that optimizes the conductance com-

munity score. An important step in our method is the neighborhood inflation step

where seeds are modified to represent their entire vertex neighborhood. Experimen-

tal results show that our seed expansion algorithm outperforms other state-of-the-art

overlapping community detection methods in terms of producing cohesive clusters

2

and identifying ground-truth communities. We also show that our new seeding

strategies are better than existing strategies and are thus effective in finding good

overlapping communities in real-world networks.

By exploiting the connection between community detection and clustering,

we develop more principled algorithms in Chapter 3 where we formulate the over-

lapping community detection problem as a non-exhaustive, overlapping graph clus-

tering problem. The goal of the non-exhaustive, overlapping clustering is to identify

overlapping clusters and also detect outliers simultaneously. We propose a sim-

ple and intuitive objective function that captures the issues of overlap and non-

exhaustiveness in a unified manner. Our objective function can be viewed as a

reformulation of the traditional k-means objective, with easy-to-understand param-

eters that capture the degrees of overlap and non-exhaustiveness. By studying the

objective, we are able to obtain a simple iterative algorithm which we call NEO-

K-Means (Non-Exhaustive, Overlapping K-Means). By considering an extension to

weighted kernel k-means, we can tackle the case of non-exhaustive and overlapping

graph clustering, and this allows us to apply our NEO-K-Means algorithm to the

overlapping community detection problem. Our experimental results show that the

new objective and algorithm are effective in finding ground-truth clusterings that

have varied overlap and non-exhaustiveness; for the case of graphs, we show that our

algorithm outperforms state-of-the-art overlapping community detection methods.

The iterative NEO-K-Means algorithm is fast but suffers from the classic

problem that iterative algorithms for k-means fall into local minimizers given poor

initialization. To get a more accurate and reliable solution, we propose a novel con-

vex semidefinite program (SDP) as a relaxation of the non-exhaustive, overlapping

clustering problem in Chapter 4. Although the SDP formulation enjoys attrac-

tive theoretical properties with respect to global optimization, it is computationally

intractable for large problem sizes. As an alternative, we optimize a low-rank fac-

3

torization of the solution. The resulting problem is non-convex but has a smaller

number of solution variables. We construct an optimization solver using an aug-

mented Lagrangian methodology that enables us to deal with problems with tens

of thousands of data points. The new solver provides more accurate and reliable

answers than other approaches.

We further extend our NEO-K-Means ideas to co-clustering problems in

Chapter 5. The goal of co-clustering is to simultaneously identify a clustering of

the rows as well as the columns of a data matrix. Indeed, the co-clustering problem

can be thought as a clustering of a bipartite graph. For example, in recommender

systems, users have ratings on items and this can be represented by a bipartite

graph where users and items are denoted by two different types of nodes, and the

ratings are denoted by weighted edges between the users and the items. To find

overlapping clusters as well as outliers on both types of the nodes in the bipartite

graph, we propose a new objective function and a simple iterative algorithm which

we call NEO-Co-Clustering (Non-Exhaustive, Overlapping Co-Clustering). We show

that our NEO-Co-Clustering technique is able to effectively capture the underlying

co-clustering structure of the data, and thus can be a useful tool for clustering of

bipartite graphs that can arise in many real-world applications.

Finally, we study the design of parallel data-driven algorithms in Chapter 6,

which enables us to further increase the scalability of our overlapping community

detection algorithms. Using PageRank as a model problem, we look at three al-

gorithm design axes: work activation, data access pattern, and scheduling. We

investigate the impact of different algorithm design choices. Using these design

axes, we design and test a variety of PageRank implementations finding that data-

driven, push-based algorithms are able to achieve a significantly superior scalability

than standard PageRank implementations. The design choices affect both single-

threaded performance as well as parallel scalability. The lessons learned from this

4

study not only guide efficient implementations of many graph mining algorithms

but also provide a framework for designing new scalable algorithms.

5

Chapter 2

Personalized PageRank-based

Overlapping Community

Detection

We develop an efficient overlapping community detection algorithm using a

seed set expansion approach. The main contribution of our work is a new overlapping

community detection algorithm with performance that greatly exceeds the state-of-

the-art. This contribution was accomplished by studying new ideas in the proto-

typical “seed-and-grow” meta-algorithm for overlapping communities. We study

each step of the overall computational pipeline in detail on real-world networks

to demonstrate the utility of each component of the algorithm. Our experimen-

tal results show that our overlapping community detection algorithm significantly

outperforms other methods in terms of run time, cohesiveness of communities, and

ground-truth accuracy.

These local seed expansion methods are among the most successful strategies

The materials presented in this chapter have been published in [79], and an extended version of
the work is currently under review [80]. Joyce developed the algorithms and conducted experiments.
Professor Gleich and Professor Dhillon supervised the work.

6

for overlapping community detection [83]. However, principled methods to choose

the seeds are few and far between. When they exist, they are usually computa-

tionally expensive (e.g., using maximal cliques as seeds [72]). Empirically successful

strategies include exhaustively exploring all individual seeds and greedy methods

that randomly pick a vertex, grow a cluster, and continue with any unassigned

vertex.

To find a set of good seeds, we present two effective seeding strategies that we

call “Graclus centers” and “Spread hubs.” The “Graclus centers” seeding is based

on the same distance kernel that underlies the equivalence between kernel k-means

and graph clustering objectives [32]. Using this distance function, we can efficiently

locate a good seed within an existing set of cohesive vertices of the graph. Specif-

ically, we first compute many clusters using a multi-level weighted kernel k-means

algorithm on the graph (the Graclus algorithm) [32], then use the corresponding

distance function to compute the “centroid vertex” of each cluster. We use the

neighborhood set of each centroid vertex as a seed region for community detection.

The idea of “Spread hubs” seeding is to select an independent set of high degree ver-

tices. This seeding strategy is inspired by recent observations that there should be

good clusters around high degree vertices in real-world networks with a power-law

degree distribution [82], [37].

The algorithm we use to grow a seed set is based on personalized PageRank

(PPR) clustering [7]. The high level idea of this expansion method is to first com-

pute the PPR vector for each of the seeds, and then expand each seed based on the

PPR score. It is important to note that we can have multiple nodes in the person-

alization vector, and indeed we use the entire vertex neighborhood of a seed node

as the personalization vector for PPR. This neighborhood inflation plays a critical

role in the success of our algorithm. The full algorithm to compute overlapping

clusters from the seeds is discussed in Chapter 2.2. We name our algorithm nise by

7

abbreviating our main idea, Neighborhood-Inflated Seed Expansion.

Our experimental results show that our seeding strategies are better than

existing seeding strategies and effective in finding good overlapping communities in

real-world networks. More importantly, we observe that nise significantly outper-

forms other state-of-the-art overlapping community detection methods in terms of

producing cohesive clusters and identifying ground-truth communities. Also, our

method scales to problems with over 45 million edges, whereas other existing meth-

ods could not run to completion on these large datasets.

2.1 Preliminaries

We formally describe the overlapping community detection problem and re-

view some important concepts in graph clustering. Also, we introduce real-world

networks which are used in our experiments.

2.1.1 Problem Statement

Given a graph G = (V, E) with a vertex set V and an edge set E , we can

represent the graph as an adjacency matrix A such that Aij = eij where eij is

the edge weight between vertices i and j, or Aij = 0 if there is no edge. We

assume that graphs are undirected, i.e., A is symmetric. The goal of the traditional,

exhaustive graph clustering problem is to partition a graph into k pairwise disjoint

clusters C1, · · · , Ck such that C1 ∪ · · · ∪ Ck = V. On the other hand, the goal of the

overlapping community detection problem is to find overlapping clusters whose union

is not necessarily equal to the entire vertex set V. Formally, we seek k overlapping

clusters such that C1 ∪ · · · ∪ Ck ⊆ V.

8

2.1.2 Measures of Cluster Quality

There are some popular measures for gauging the quality of clusters: cut,

normalized cut, and conductance. Let us define links(Cp, Cq) to be the sum of edge

weights between vertex sets Cp and Cq.

Cut. The cut of cluster Ci is defined as the sum of edge weights between Ci

and its complement, V\Ci:

cut(Ci) = links(Ci,V\Ci). (2.1)

Normalized Cut. The normalized cut of a cluster is defined by the cut

with volume normalization as follows:

NCut(Ci) =
cut(Ci)

links(Ci,V)
. (2.2)

Conductance. The conductance of a cluster is defined to be the cut divided

by the least number of edges incident on either set Ci or V\Ci:

cond(Ci) =
cut(Ci)

min
(
links(Ci,V), links(V\Ci,V)

) .
By definition, cond(Ci) = cond(V\Ci). The conductance of a cluster is the probabil-

ity of leaving that cluster by a one-hop walk starting from the smaller set between

Ci and V\Ci. Notice that cond(Ci) is always greater than or equal to NCut(Ci).

2.1.3 Graph Clustering and Weighted Kernel k-means

The normalized cut objective of a graph G is defined by

NCut(G) = min
C1,...,Ck

k∑
i=1

links(Ci,V\Ci)
links(Ci,V)

. (2.3)

9

Table 2.1: Summary of real-world networks.

Category Graph No. of vertices No. of edges Avg. CC Source

Collaboration HepPh 11,204 117,619 0.6216 [4]
AstroPh 17,903 196,972 0.6328 [4]

CondMat 21,363 91,286 0.6417 [4]
DBLP 317,080 1,049,866 0.6324 [4]

Product Amazon 334,863 925,872 0.3967 [4]

Social Orkut 731,332 21,992,171 0.2468 [4]
Flickr 1,994,422 21,445,057 0.1881 [61]

Myspace 2,086,141 45,459,079 0.1242 [75]
LiveJournal 1,757,326 42,183,338 0.2400 [75]

LiveJournal2 1,143,395 16,880,773 0.2535 [4]

This objective is equivalent to a weighted kernel k-means objective with the weight

of each data point set to the degree of a vertex, and the kernel matrix set to K =

σD−1 +D−1AD−1, where D is the diagonal matrix of degrees (i.e., Dii =
∑n

j=1Aij

where n is the total number of nodes), and σ is a scalar typically chosen to make K

positive-definite [32]. Then, we can quantify the kernel distance between a vertex

v ∈ Ci and a cluster Ci, denoted dist(v, Ci), as follows:

dist(v, Ci) = − 2 links(v, Ci)
deg(v) deg(Ci)

+
links(Ci, Ci)
deg(Ci)2

+
σ

deg(v)
− σ

deg(Ci)
(2.4)

where deg(v) = links(v,V), and deg(Ci) = links(Ci,V).

2.1.4 Datasets

We use ten different real-world networks including collaboration networks,

social networks, and a product network from [4], [75], and [61]. The networks are

presented in Table 2.1. All the networks are loop-less, connected, undirected graphs.

In a collaboration network, vertices indicate authors, and edges indicate co-

authorship. If authors u and v wrote a paper together, there exists an edge between

10

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Degree

N
o.

 o
f n

od
es

DBLP
Amazon
Flickr

Figure 2.1: Degree distributions of real-world networks – the degree distributions
follow a power-law.

them. For example, if a paper is written by four authors, this is represented by

a clique of size four in the network. HepPh, AstroPh, and CondMat networks are

constructed based on the papers submitted to the arXiv e-print service. The DBLP

network is constructed based on the DBLP computer science bibliography website.

We use five social networks: Flickr, Myspace, LiveJournal, LiveJournal2 (a

variation with ground-truth), and Orkut. Flickr is an online photo sharing ap-

plication, Myspace is a social entertainment networking service, LiveJournal is a

blogging application where users can publish their own journals, and Orkut was a

social networking website operated by Google.

In the Amazon product network, vertices represent products and edges rep-

resent co-purchasing information. If products u and v are frequently co-purchased,

there exists an edge between them. This network is constructed based on Customers

Who Bought This Item Also Bought feature of the Amazon website.

In Table 2.1, we present the number of nodes/edges and the average clustering

coefficient (CC) of each of the networks. Figure 2.1 shows the degree distributions

of DBLP, Flicker and Amazon networks. We can see that the real-world networks

have distinguishing characteristics: a power-law degree distribution [13] and a high

clustering coefficient [77], [34].

We have ground-truth communities [4] on some of the datasets. In DBLP,

11

Figure 2.2: Overview of nise. nise consists of four main phases: filtering, seeding,
seed expansion, and propagation.

each publication venue (i.e., journal or conference) can be considered as an individual

ground-truth community. In the Amazon network, each ground-truth community

can be defined to be a product category that Amazon provides. In LiveJournal2

and Orkut networks, there exists user-defined social groups. On LiveJournal2 and

Orkut networks, the ground-truth communities do not cover a substantial portion

of the graph, so we use a subgraph which is induced by the nodes that have at

least one membership in the ground-truth communities. In Table 2.1, the statistics

about LiveJournal2 and Orkut are based on the induced subgraphs we used in our

experiments.

2.2 Overlapping Community Detection Using Neighborhood-

Inflated Seed Expansion

We introduce our overlapping community detection algorithm, nise which

consists of four phases: filtering, seeding, seed expansion, and propagation. In the

filtering phase, we remove regions of the graph that are trivially separable from the

rest of the graph. In the seeding phase, we find good seeds in the filtered graph,

and in seed expansion phase, we expand the seeds using a personalized PageRank

clustering scheme. Finally, in the propagation phase, we further expand the com-

munities to the regions that were removed in the filtering phase. Figure 2.2 shows

the overview of the nise algorithm.

12

2.2.1 Filtering Phase

The goal of the filtering phase is to identify regions of the graph where an

algorithmic solution is required to identify the overlapping clusters. To explain our

filtering step, recall that almost all graph partitioning methods begin by assigning

each connected component to a separate partition. Any other choice of partitioning

for disconnected components is entirely arbitrary. The Metis procedure [46], for

instance, may combine two disconnected components into a single partition in order

to satisfy a balance constraint on the partitioning. For the problem of overlapping

clustering, an analogous concept can be derived from biconnected components. We

now review a series of definitions and formalizations of these ideas in order to an-

alyze our filtering phase and prove new theorems about our propagation phase in

Chapter 2.2.4. A biconnected component is defined as follows:

Definition 1. Given a graph G = (V, E), a biconnected component is a maximal

induced subgraph G′ = (V ′, E ′) that remains connected after removing any vertex

and its adjacent edges in G′.

Let us define the size of a biconnected component to be the number of edges

in G′. Now, consider all the biconnected components of size one. Notice that there

should be no overlapping partitions that use these edges because they bridge disjoint

communities. Consequently, our filtering procedure is to find the largest connected

component of the graph after we remove all single-edge biconnected components. We

call this the “biconnected core” of the graph even though it may not be biconnected.

Let ES denote all the single-edge biconnected components. Then, the biconnected

core graph is defined as follows:

Definition 2. The biconnected core GC = (VC , EC) is the maximum size connected

subgraph of G′′ = (V, E \ ES).

Subgraphs connected to the biconnected core are called whiskers by Leskovec

13

Figure 2.3: Biconnected core, whiskers, and bridges – grey region indicates the bi-
connected core where vertices are densely connected to each other, and green compo-
nents indicate whiskers. Red edges indicate bridges which connect the biconnected
core and the whiskers.

et al. [53] and we use the concept of a bridge to define them:

Definition 3. A bridge is a biconnected component of size one which is directly

connected to the biconnected core.

Whiskers are then defined as follows:

Definition 4. A whisker W = (VW , EW) is a maximal subgraph of G that can be

detached from the biconnected core by removing a bridge.

Let EB be all the bridges in a graph. Notice that EB ⊆ ES . On the region

which is not included in the biconnected core graph GC , we define the detached

graph GD as follows:

Definition 5. GD = (VD, ED) is the subgraph of G which is induced by V \ VC .

Finally, given the original graph G = (V, E), V and E can be decomposed as

follows:

Proposition 1. Given a graph G = (V, E), V = VC ∪ VD and E = EC ∪ ED ∪ EB.

Proof. This follows from the definitions of the biconnected core, bridges, and the

detached graph.

14

Table 2.2: Biconnected core and the detached graph (in the last column, LCC refers
to the largest connected component).

Biconnected core Detached graph

No. of vertices (%) No. of edges (%) No. of components Size of the LCC (%)

HepPh 9,945 (88.8%) 116,099 (98.7%) 1,123 21 (0.1874%)
AstroPh 16,829 (94.0%) 195,835 (99.4%) 957 23 (0.1285%)

CondMat 19,378 (90.7%) 89,128 (97.6%) 1,669 12 (0.0562%)
DBLP 264,341 (83.4%) 991,125 (94.4%) 43,093 32 (0.0101%)

Amazon 291,449 (87.0%) 862,836 (93.2%) 25,835 250 (0.0747%)
Flickr 954,672 (47.9%) 20,390,649 (95.1%) 864,628 107 (0.0054%)

Myspace 1,724,184 (82.7%) 45,096,696 (99.2%) 332,596 32 (0.0015%)
LiveJournal 1,650,851 (93.9%) 42,071,541 (99.7%) 101,038 105 (0.0060%)

LiveJournal2 1,076,499 (94.2%) 16,786,580 (99.4%) 59,877 91 (0.0080%)
Orkut 729,634 (99.8%) 21,990,221 (99.9%) 1,529 15 (0.0021%)

Figure 2.3 illustrates the biconnected core, whiskers, and bridges. The output

of our filtering phase is the biconnected core graph where whiskers are filtered out

(we remove regions that are clearly partitionable from the remainder). Note that

there is no overlap between any of the whiskers. This indicates that there is no need

to apply overlapping community detection algorithm on the detached regions.

Table 2.2 shows the size of the biconnected core and the connectivity of the

detached graph in our real-world networks. Details of these networks are presented

in Table 2.1. We compute the size of the biconnected core in terms of the number of

vertices and edges. The number reported in the parenthesis shows how many vertices

or edges are included in the biconnected core, i.e., the percentages of |VC |/|V| and

|EC |/|E|, respectively. We also compute the number of connected components in the

detached graph, and the size of the largest connected component (LCC in Table 2.2)

in terms of the number of vertices. The number reported in the parenthesis indicates

the relative size of the largest connected component compared to the number of

vertices in the original graph.

We can see that the biconnected core contains a substantial portion of the

edges. In terms of the vertices, the biconnected core contains around 80 or 90 per-

centage of the vertices for all datasets except Flickr. In Flickr, the biconnected core

15

only contains around 50 percentage of the vertices while it contains 95 percentage of

edges. This indicates that the biconnected core is dense while the detached graph is

quite sparse. Recall that the biconnected core is one connected component. On the

other hand, in the detached graph, there are many connected components, which

implies that the vertices in the detached graph are likely to be disconnected with

each other. Notice that each connected component in the detached graph corre-

sponds to a whisker. So, the largest connected component can be interpreted as

the largest whisker. Based on the statistics of the detached graph, we can see that

whiskers tend to be separable from each other, and there are no significant size

whiskers. Also, the gap between the sizes of the biconnected core and the largest

whisker is significant. All these statistics and observations support that our filtering

phase creates a reasonable and more tractable input for an overlapping community

detection algorithm.

2.2.2 Seeding Phase

Once we obtain the biconnected core graph, we find seeds in this filtered

graph. The goal of an effective seeding strategy is to identify a diversity of vertices,

each of which lies within a cluster of good conductance. This identification should

not be too computationally expensive.

Graclus Centers. One way to achieve these goals is to first apply a high

quality and fast graph partitioning scheme (disjoint clustering of vertices in a graph)

in order to compute a collection of sets with fairly small conductance. Then, we

select a set of seeds by picking the most central vertex from each set (cluster). The

idea here is roughly that we want something that is close to the partitioning – which

ought to be good – but that allows overlap to produce better boundaries between

the partitions.

See Algorithm 1 for the full procedure. In practice, we perform top-down

16

Algorithm 1 Seeding by Graclus Centers

Input: graph G, the number of seeds k.
Output: the seed set S.

1: Compute exhaustive and non-overlapping clusters Ci (i=1, ..., k) on G.
2: Initialize S = ∅.
3: for each cluster Ci do
4: for each vertex v ∈ Ci do
5: Compute dist(v, Ci) using (2.4).
6: end for
7: S = {argmin

v
dist(v, Ci)} ∪ S.

8: end for

Algorithm 2 Seeding by Spread Hubs

Input: graph G = (V, E), the number of seeds k.
Output: the seed set S.

1: Initialize S = ∅.
2: All vertices in V are unmarked.
3: while |S| < k do
4: Let T be the set of unmarked vertices with max degree.
5: for each t ∈ T do
6: if t is unmarked then
7: S = {t} ∪ S.
8: Mark t and its neighbors.
9: end if

10: end for
11: end while

hierarchical clustering using Graclus [32] to get a large number of clusters. Then,

we take the center of each cluster as a seed – the center of a cluster is defined to

be the vertex that is closest to the cluster centroid (as discussed in Chapter 2.1.3,

we can quantify the distance between a vertex and a cluster centroid by using the

kernel that underlies the relationship between kernel k-means and graph clustering);

see steps 5 and 7 in Algorithm 1. If there are several vertices whose distances are

tied for the center of a cluster, we include all of them.

Spread Hubs. From another viewpoint, the goal is to select a set of well-

distributed seeds in the graph, such that they will have high coverage after we

17

expand the sets. We greedily choose an independent set of k points in the graph

by looking at vertices in order of decreasing degree. For this heuristic, we draw

inspiration from the distance function (2.4), which shows that the distance between

a vertex and a cluster is inversely proportional to degree. Thus, high degree vertices

are expected to have small distances to many other vertices. This also explains

why we call the method spread hubs. It also follows from the recent results in [37],

[82] which show that there should be good clusters around high degree vertices in

power-law graphs with high clustering coefficients. We use an independent set in

order to avoid picking seeds nearby each other.

Our full procedure is described in Algorithm 2. In the beginning, all the ver-

tices are unmarked. Until k seeds are chosen, the following procedure is repeated:

among unmarked vertices, the highest degree vertex is selected as a seed, and then

the selected vertex and its neighbors are marked. As the algorithm proceeds explor-

ing hubs in the network, if there are several vertices whose degrees are the same, we

take an independent set of those that are unmarked. This step may result in more

than k seeds, however, the final number of returned seeds typically does not exceed

the input k too much because there usually are not too many high degree vertices.

2.2.3 Seed Expansion Phase

Once we have a set of seed vertices, we wish to expand the clusters around

those seeds. An effective technique for this task is using a personalized PageRank

(PPR) vector [64], also known as a random-walk with restart [66]. A personalized

PageRank vector is the stationary distribution of a random walk that, with proba-

bility α follows a step of a random walk and with probability (1−α) jumps back to

a seed node. If there are multiple seed nodes, then the choice is usually uniformly

random. Thus, nodes close by the seed are more likely to be visited. Recently, such

techniques have been shown to produce communities that best match communities

18

Algorithm 3 Seed Expansion by PPR

Input: graph G = (V, E), a seed node s ∈ S, PageRank link-following probability
parameter 0 < α < 1, accuracy ε > 0

Output: low conductance set C
1: Set T = {s} ∪ {neighbors of s}
2: Initialize xv=0 for v ∈ V
3: Initialize rv = 0 for v ∈ V \ T , rv=1/|T | for v ∈ T
4: while any rv > deg(v)ε do
5: Update xv = xv + (1− α)rv.
6: For each (v, u) ∈ E ,

update ru = ru + αrv/(2 deg(v))
7: Update rv = αrv/2
8: end while
9: Sort vertices by decreasing xv/ deg(v)

10: For each prefix set of vertices in the sorted list, compute the conductance of that
set and set C to be the set that achieves the minimum.

found in real-world networks [5]. In fact, personalized PageRank vectors have close

relationships to graph cuts and clustering methods. Andersen et al. [7] show that

a particular algorithm to compute a personalized PageRank vector, followed by a

sweep over all cuts induced by the vector, will identify a set of good conductance

within the graph. They prove this via a “localized Cheeger inequality” that states,

informally, that the set identified via this procedure has a conductance that is not

too far away from the best conductance of any set containing that vertex. Also,

Mahoney et al. [59] show that personalized PageRank is, effectively, a seed-biased

eigenvector of the Laplacian. They also show a limit to relate the personalized

PageRank vectors to the Fiedler vector of a graph.

We briefly summarize the PPR-based seed expansion procedure in Algo-

rithm 3 (each seed is expanded by this procedure). Please see Andersen et al. [7] for

a full description of the algorithm. The high level idea of this expansion method is

that given a set of restart nodes (denoted by T in Algorithm 3), we first compute

the PPR vector, examine nodes in order of highest to lowest PPR score, and then

return the set that achieves the minimum conductance.

19

It is important to note that we can have multiple nodes in T (which corre-

sponds to nonzero elements in the personalization vector in PPR), and indeed we

use the entire vertex neighborhood of a seed node as the restart nodes (see step 1 in

Algorithm 3). Since we do not just use a singleton seed but also use its neighbors

as the restart nodes in PPR, we call step 1 neighborhood inflation. We empirically

observed that this neighborhood inflation plays a critical role in producing low con-

ductance communities. See Chapter 2.4 for details. Recently, Gleich and Seshadhri

[37] have provided some theoretical justification for why neighborhood-inflated seeds

may outperform a singleton seed in PPR expansion on many real-world networks.

Steps 2-8 are closely related to a coordinate descent optimization procedure

[18] on the PageRank linear system. Although it may not be apparent from the pro-

cedure, this algorithm is remarkably efficient when combined with the appropriate

data structures. The algorithm keeps two vectors of values for each vertex, x and

r. In a large graph, most of these values will remain zero on the vertices and hence,

these need not be stored. Our implementation uses a hash table for the vectors

x and r. Consequently, the sorting step is only over a small fraction of the total

vertices.

In the original PPR clustering [7], the PPR score is divided by the degree of

each node (step 9) to remove bias towards high degree nodes. This step converts

a PageRank vector, a left eigenvector of a Markov chain, into the right eigenvec-

tor of a Markov chain. Right eigenvectors are close relatives of the Fiedler vector

of a graph, and so this degree normalization produces a vector that we call the

Fiedler Personalized PageRank vector because of this relationship. Fiedler vectors

also satisfy Cheeger inequalities, just like the Fiedler Personalized PageRank vec-

tors. However, Kloumann and Kleinberg [47] recently reported that this degree

normalization might slightly degrade the quality of the output clusters in terms of

matching with ground-truth communities in some real-world networks. So, in our

20

experiments, we also try using the PPR score which we just call PPR. We compare

the performance of the Fiedler PPR and PPR in Chapter 2.4.

In Algorithm 3, there are two parameters which are related to PPR compu-

tation: α and ε. We follow standard practice for PPR clustering on an undirected

graph and set α = 0.99 [53]. This value yields results that are similar to those

without damping, yet have bounded computational time. The parameter ε is an ac-

curacy parameter. As ε→ 0, the final vector solution x tends to the exact solution

of the PageRank linear system. When used for clustering, however, this parameter

controls the effective size of the final cluster. If ε is large (about 10−2), then the

output vector is inaccurate, incredibly sparse, and the resulting cluster is small.

If ε is small, say 10−8, then the PageRank vector is accurate, nearly dense, and

the resulting cluster may be large. We thus run the PPR clustering scheme several

times, with a range of accuracy parameters that are empirically designed to produce

clusters with between 1 and 50,000 times the number of edges in the initial seed set

(these values of ε are fixed and independent of the graph). The final community we

select is the one with the best conductance score from these possibilities.

2.2.4 Propagation Phase

Once we get the personalized PageRank communities on the biconnected

core, we further expand each of the communities to the regions detached in the

filtering phase. Our assignment procedure is straightforward: for each detached

whisker connected via a bridge, we add that piece to all of the clusters that utilize

the other vertex in the bridge. This procedure is described in Algorithm 4. We show

that our propagation procedure only improves the quality of the final clustering

result in terms of the normalized cut metric. To do this, we need to fix some

notation. Let EBi be a set of bridges which are attached to Ci, and WCi be a set of

21

Algorithm 4 Propagation Procedure

Input: graph G = (V, E), biconnected core GC = (VC , EC), communities of GC : Ci
(i = 1, ..., k) ∈ C.

Output: communities of G.
1: for each Ci ∈ C do
2: Detect bridges EBi attached to Ci.
3: for each bj ∈ EBi do
4: Detect the whisker wj = (Vj , Ej) which is attached to bj .
5: Ci = Ci ∪ Vj .
6: end for
7: end for

whiskers which are attached to the bridges, i.e., WCi = (VWi , EWi) where

wj = (Vj , Ej) ∈WCi ; VWi =
⋃

wj∈WCi

Vj ; and EWi =
⋃

wj∈WCi

Ej .

Finally, let C′i denote the expanded Ci, where |C′i| ≥ |Ci|. Equality holds in this

expression when there is no bridge attached to Ci. When we expand Ci using Algo-

rithm 4, C′i is equal to {Ci
⋃
VWi}. The following results show that we only decrease

the (normalized) cut by adding the whiskers.

Theorem 1. If a community Ci is expanded to C′i using Algorithm 4, cut(C′i) =

cut(Ci)− links(VWi , Ci).

Proof. Recall that cut(Ci) is defined as follows:

cut(Ci) = links(Ci,V \ Ci).

= links(Ci,V)− links(Ci, Ci).

Let us first consider links(C′i,V) as follows:

links(C′i,V) = links(Ci,V) + links(VWi ,V)− links(VWi , Ci). (2.5)

Notice that links(VWi ,V) = links(VWi ,VWi) + links(VWi , Ci) by definition of

22

whiskers. Thus, links(C′i,V) can be expressed as follows:

links(C′i,V) = links(Ci,V) + links(VWi ,VWi). (2.6)

On the other hand, links(C′i, C′i) can be expressed as:

links(C′i, C′i) = links(VWi ,VWi) + links(Ci, Ci) + links(VWi , Ci). (2.7)

Now, let us compute cut(C′i) which is defined by

cut(C′i) = links(C′i,V)− links(C′i, C′i). (2.8)

By rewriting (2.8) using (2.6) and (2.7), we can express cut(C′i) as follows:

cut(C′i) = cut(Ci)− links(VWi , Ci).

Theorem 2. If a community Ci is expanded to C′i using Algorithm 4, NCut(C′i) ≤

NCut(Ci).

Proof. Recall that

NCut(Ci) =
cut(Ci)

links(Ci,V)
.

On the other hand, by Theorem 1, we can represent NCut(C′i) as follows:

NCut(C′i) =
cut(C′i)

links(C′i,V)
.

=
cut(Ci)− links(VWi , Ci)

links(Ci,V) + links(VWi ,VWi)
.

Therefore, NCut(C′i) ≤ NCut(Ci). Equality holds when there is no bridge attached to

Ci, i.e., EBi = ∅.

Table 2.3 shows the average normalized cut values before and after the prop-

23

Table 2.3: Average normalized cut values before & after propagation. Theorem 2
shows this should decrease.

Graph Before Propagation After Propagation

HepPh 0.1383 0.1282
AstroPh 0.1764 0.1728
CondMat 0.1841 0.1717
DBLP 0.2329 0.2035
Amazon 0.1356 0.1159

agation phase. As predicted by the theorem, these values decrease after the propa-

gation on this set of graphs.

2.3 Related Work

For overlapping community detection, many different approaches have been

proposed [83] including clique percolation, line graph partitioning, eigenvector meth-

ods, ego network analysis, and low-rank models. Clique percolation methods look

for overlap between fixed size cliques in the graph [65]. Line graph partitioning is

also known as link communities. Given a graph G = (V, E), the line graph of L(G)

(also called the dual graph) has a vertex for each edge in G and an edge whenever

two edges (in G) share a vertex. For instance, the line graph of a star is a clique. A

partitioning of the line graph induces an overlapping clustering in the original graph

[6]. Even though these clique percolation and line graph partitioning methods are

known to be useful for finding meaningful overlapping structures, these methods

often fail to scale to large networks like those we consider.

Eigenvector methods generalize spectral methods and use a soft clustering

scheme applied to eigenvectors of the normalized Laplacian or modularity matrix in

order to estimate communities [86]. Ego network analysis methods use the theory

of structural holes [23], and compute and combine many communities through ma-

nipulating ego networks [71], [30]. We compare against the Demon method [30] that

24

uses this strategy. We also note that other low-rank methods such as non-negative

matrix factorizations identify overlapping communities as well. We compare against

the Bigclam method [85] that uses this approach.

The approach we employ is called local optimization and expansion [83].

Starting from a seed, such a method greedily expands a community around that

seed until it reaches a local optima of the community detection objective. Deter-

mining how to seed a local expansion method is, arguably, a critical problem within

these methods. Strategies to do so include using maximal cliques [72], prior infor-

mation [36], or locally minimal neighborhoods [37]. The latter method was shown

to identify the vast majority of good conductance sets in a graph; however, there

was no provision made for total coverage of all vertices.

Different optimization objectives and expansion methods can be used in a

local expansion method. For example, Oslom [50] tests the statistical significance

of clusters with respect to a random configuration during community expansion.

Starting from a randomly picked node, the Oslom method greedily expands the

cluster by checking whether the expanded community is statistically significant or

not, which results in detecting a set of overlapping clusters and outliers in a graph.

We compare our method with the Oslom method in our experiments (see Chapter

2.4).

In our algorithm, we use a personalized PageRank based cut finder [7] for

the local expansion method. Abrahao et al. [5] observe that the structure of real-

world communities can be well captured by the random-walk-based algorithms, i.e.,

personalized PageRank clusters are topologically similar to real-world clusters. More

recently, Kloumann and Kleinberg [47] propose to use pure PageRank scores instead

of the Fiedler PageRank scores to get a higher accuracy in terms of matching with

ground-truth communities.

25

2.4 Experimental Results

We compare our algorithm, nise, with other state-of-the-art overlapping

community detection methods: Bigclam [85], Demon [30], and Oslom [50]. For

these three methods, we used the software which is provided by the authors of [85],

[30], and [50] respectively. While Demon and Oslom only support a sequential exe-

cution, Bigclam supports a multi-threaded execution. nise is written in a mixture of

C++ and MATLAB. In nise, seeds can be expanded in parallel, and this feature is

implemented using parallel computing toolbox provided by MATLAB. We compare

the performance of each of these methods on ten different real-world networks which

are presented in Chapter 2.1.4. Within nise, we also compare the performance of

different seeding strategies and some variants of expansion methods. We use four

different seeding strategies: “graclus centers” (denoted by “nise-grc-*”) and “spread

hubs” (denoted by “nise-sph-*”) which are proposed in this chapter, “locally min-

imal neighborhoods” (denoted by “nise-lcm-*”) which has been proposed in [37],

and random seeding strategy (denoted by “nise-rnd-*”) where we randomly take k

seeds. Andersen and Lang [8] have provided some theoretical justification for why

random seeding also should be competitive. We also compare two different expan-

sion methods: the Fiedler Personalized PageRank (denoted by “nise-*-fppr”), and

the standard Personalized PageRank (denoted by “nise-*-ppr”).

2.4.1 Graph Coverage

We first report the returned number of clusters and the graph coverage of

each algorithm in Table 2.4. The graph coverage indicates how many vertices are

assigned to clusters (i.e., the number of assigned vertices divided by the total number

of vertices in a graph). Note that we can control the number of seeds k in nise and

the number of clusters k in Bigclam. We set k (in our methods and Bigclam) as

100 for HepPh, 200 for AstroPh and CondMat, 15,000 for Flickr, Myspace, and

26

Table 2.4: Returned number of clusters and graph coverage of each algorithm

Graph oslom demon bigclam nise-sph-fppr nise-grc-fppr

HepPh coverage (%) 100 88.83 84.37 100 100
no. of clusters 608 5,147 100 99 90

AstroPh coverage (%) 100 94.15 91.11 100 100
no. of clusters 1,241 8,259 200 212 246

CondMat coverage (%) 100 91.16 99.96 100 100
no. of clusters 1,534 10,474 200 201 249

Flickr coverage (%) N/A N/A 52.13 93.60 100
no. of clusters N/A N/A 15,000 15,349 16,347

LiveJournal coverage (%) N/A N/A 43.86 99.78 99.79
no. of clusters N/A N/A 15,000 15,058 16,271

Myspace coverage (%) N/A N/A N/A 99.87 100
no. of clusters N/A N/A N/A 15,324 16,366

DBLP coverage (%) 100 84.89 100 100 100
no. of clusters 17,519 174,560 25,000 26,503 18,477

Amazon coverage (%) 100 79.16 100 100 100
no. of clusters 17,082 105,685 25,000 27,763 20,036

Orkut coverage (%) N/A N/A 82.13 99.99 100
no. of clusters N/A N/A 25,000 25,204 32,622

LiveJournal2 coverage (%) N/A N/A 56.64 99.95 99.99
no. of clusters N/A N/A 25,000 25,065 32,274

LiveJournal, and 25,000 for DBLP, Amazon, LiveJournal2, and Orkut networks

without any tuning and using the guidance that larger graphs can have more clusters

(Chapter 2.4.6 discusses varying k). For the networks where we have ground-truth

communities, we slightly overestimate the number of clusters k since there usually

exists a large number of ground-truth communities. Since we remove duplicate

clusters after the PageRank expansion in nise, the returned number of clusters can

be smaller than k. Also, since we choose all the tied seeds in “graclus centers” and

“spread hubs”, the returned number of clusters of these algorithms can be slightly

larger than k. Recall that we use a top-down hierarchical clustering scheme in

the “graclus centers” strategy. So, in this case, the returned number of clusters

27

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Coverage (percentage)

M
ax

im
um

 C
on

du
ct

an
ce

fppr−lcm−single
fppr−lcm−ego
fppr−rnd−single
fppr−rnd−ego
fppr−grc−single
fppr−grc−ego
fppr−sph−single
fppr−sph−ego

(a) LiveJournal

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Coverage (percentage)

M
ax

im
um

 C
on

du
ct

an
ce

fppr−lcm−single
fppr−lcm−ego
fppr−rnd−single
fppr−rnd−ego
fppr−grc−single
fppr−grc−ego
fppr−sph−single
fppr−sph−ego

(b) Myspace

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Coverage (percentage)

M
ax

im
um

 C
on

du
ct

an
ce

fppr−lcm−single
fppr−lcm−ego
fppr−rnd−single
fppr−rnd−ego
fppr−grc−single
fppr−grc−ego
fppr−sph−single
fppr−sph−ego

(c) Flickr

Figure 2.4: Importance of neighborhood inflation – there is a large performance
gap between singleton seeds and neighborhood-inflated seeds for all the seeding
strategies. Neighborhood inflation plays a critical role in the success of nise. When
neighborhood-inflated seeds are used, “graclus centers” and “spread hubs” seeding
strategies significantly outperform other seeding strategies.

before filtering the duplicate clusters is slightly greater than or equal to 2dlog ke.

Demon and Oslom determine the number of clusters based on datasets themselves,

although these methods fail on Flickr, Myspace, LiveJournal, LiveJournal2, and

Orkut. Bigclam does not finish on the Myspace network (using 4 threads) after

running for one week.

2.4.2 Importance of Neighborhood-Inflation

We evaluate the quality of overlapping communities in terms of the maxi-

mum conductance of any cluster. A high quality algorithm should return a set of

clusters that covers a large portion of the graph with small maximum conductance.

This metric can be captured by a conductance-vs-coverage curve. That is, for each

method, we first sort the clusters according to the conductance scores in ascending

order, and then greedily take clusters until a certain percentage of the graph is cov-

ered. The x-axis of each plot is the graph coverage, and the y-axis is the maximum

conductance value among the clusters we take. We can interpret this plot as follows:

we need to use clusters whose conductance scores are less than or equal to y to cover

x percentage of the graph. Note that lower conductance indicates better quality of

28

clusters, i.e., a lower curve indicates better clusters.

First, we verify the importance of neighborhood inflation in our seed expan-

sion phase. Recall that when we compute the personalized PageRank (PPR) score

for each seed node, we use the seed node’s entire vertex neighborhood (the vertex

neighborhood is also referred to as “ego network”) as the restart region in PPR

(details are in Chapter 2.2.3). To see how this affects the overall performance of

the seed expansion method, we compare the performance of singleton seeds and

neighborhood-inflated seeds. Figure 2.4 shows the conductance-vs-coverage plot

for singleton seeds and neighborhood-inflated seeds. “*-single” indicates singleton

seeds, i.e., each seed is solely used as the restart region in PPR. “*-ego” indicates

neighborhood-inflated seeds. We also used four different seeding strategies: “graclus

centers” (denoted by “grc-*”), “spread hubs” (denoted by “sph-*”), “locally minimal

neighborhoods” (denoted by “lcm-*”), and “random” (denoted by “rnd-*”).

We can see that the performance significantly degrades when singleton seeds

are used for all the seeding strategies. This implies that neighborhood inflation

plays a critical role in the success of our method. Even though we only present the

results on LiveJournal, Myspace, and Flickr in Figure 2.4 for brevity, we consistently

observed that neighborhood-inflated seeds are much better than singleton seeds on

all other networks. We also notice that that when neighborhood-inflated seeds

are used, both “graclus centers” and “spread hubs” seeding strategies significantly

outperform other seeding strategies. “spread hubs” and “graclus centers” seeding

strategies produce similar results on LiveJournal whereas “graclus centers” is better

than “spread hubs” on Myspace and Flickr. We used the conventional Fiedler PPR

for the expansion phase in Figure 2.4, but we also got the same conclusion using the

standard PPR.

29

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
AUC of conductance−vs−coverage

bigclam
demon
oslom
nise−lcm−fppr
nise−rnd−fppr
nise−grc−fppr
nise−sph−fppr
nise−grc−ppr
nise−sph−ppr

(a) AstroPh

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
AUC of conductance−vs−coverage

bigclam
demon
oslom
nise−lcm−fppr
nise−rnd−fppr
nise−grc−fppr
nise−sph−fppr
nise−grc−ppr
nise−sph−ppr

(b) HepPh

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
AUC of conductance−vs−coverage

bigclam
demon
oslom
nise−lcm−fppr
nise−rnd−fppr
nise−grc−fppr
nise−sph−fppr
nise−grc−ppr
nise−sph−ppr

(c) CondMat

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
AUC of conductance−vs−coverage

bigclam
nise−lcm−fppr
nise−rnd−fppr
nise−grc−fppr
nise−sph−fppr
nise−grc−ppr
nise−sph−ppr

(d) Flickr

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
AUC of conductance−vs−coverage

bigclam
nise−lcm−fppr
nise−rnd−fppr
nise−grc−fppr
nise−sph−fppr
nise−grc−ppr
nise−sph−ppr

(e) LiveJournal

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
AUC of conductance−vs−coverage

nise−lcm−fppr
nise−rnd−fppr
nise−grc−fppr
nise−sph−fppr
nise−grc−ppr
nise−sph−ppr

(f) Myspace

Figure 2.5: AUC of Conductance-vs-coverage – lower bar indicates better communi-
ties. nise outperforms Demon, Oslom, and Bigclam. Within nise, “graclus centers”
and “spread hubs” seeding strategies are better than other seeding strategies, and
the Fiedler PPR produces slightly better communities than the standard PPR.

2.4.3 Community Quality Using Conductance

We compute AUC (Area Under the Curve) of the conductance-vs-coverage

to compare the performance of nise with other state-of-the-art methods. Within

nise, we also compare four different seeding strategies and two different expansion

methods. The AUC scores are normalized such that they are between zero and one.

Figure 2.5 shows AUC scores on the six networks where we do not have ground-truth

community information (see Table 2.1 for details about these networks). We can

see several patterns in Figure 2.5. First, within nise, “graclus centers” and “spread

hubs” seeding strategies outperform the other two seeding strategies. Second, for

most of the cases, “fppr” leads to slightly better communities than “ppr”. Also, we

30

can see that “nise-grc-fppr” shows the best performance for all networks. Third,

nise outperforms Demon, Oslom, and Bigclam. There is a significant performance

gap between nise and these methods.

We also compared nise with a non-overlapping clustering to study the benefit

of overlap. If we use the clusters produced by Graclus [32], a graph partitioning

method which is used within our “graclus centers” seeding strategy, we observed

that nise also significantly outperforms Graclus on all the networks. For example,

in terms of conductance measure, the AUC of Graclus is 0.5309 while the AUC of

nise is 0.1019. Due to the large performance gap between these clusterings, we omit

more comprehensive numerical evaluation.

2.4.4 Community Quality via Ground-truth

We have ground-truth communities for the DBLP, Amazon, LiveJournal2,

and Orkut networks, thus, for these networks, we compare against the ground-

truth communities. Given a set of algorithmic communities C and the ground-truth

communities S, we compute the F1 measure and the F2 measure to evaluate the

relevance between the algorithmic communities and the ground-truth communities.

In general, Fβ measure is defined as follows:

Fβ(Si) = (1 + β2)
precision(Si) · recall(Si)

β2 · precision(Si) + recall(Si)

where β is a non-negative real value, and the precision and recall of Si ∈ S are

defined as follows:

precision(Si) =
|Cj
⋂
Si|

|Cj |
,

recall(Si) =
|Cj
⋂
Si|

|Si|
,

31

Table 2.5: F1 and F2 measures. nise with “spread hubs” seeding strategy achieves
the highest F1 and F2 scores.

DBLP Amazon LiveJournal2 Orkut
F1 F2 F1 F2 F1 F2 F1 F2

bigclam 15.1% 13.0% 27.1% 25.6% 11.3% 13.7% 43.0% 47.4%
demon 13.7% 12.0% 16.5% 15.3% N/A N/A N/A N/A
oslom 13.4% 11.6% 32.0% 30.2% N/A N/A N/A N/A
nise-lcm-fppr 13.9% 15.4% 46.3% 56.5% 11.3% 13.8% 40.9% 46.8%
nise-rnd-fppr 17.7% 20.5% 48.9% 58.8% 12.1% 16.5% 54.6% 62.9%
nise-sph-fppr 18.1% 21.4% 49.2% 59.5% 12.7% 18.1% 55.1% 64.2%
nise-sph-ppr 19.0% 22.6% 49.7% 58.7% 12.8% 18.1% 57.4% 65.2%
nise-grc-fppr 17.6% 21.7% 46.7% 57.1% 12.2% 17.6% 51.1% 61.4%
nise-grc-ppr 17.6% 22.0% 47.3% 56.0% 12.8% 17.6% 53.5% 62.4%

where Cj ∈ C, and Fβ(Si) = Fβ(Si, Cj∗) where j∗ = argmaxj Fβ(Si, Cj). Then, the

average Fβ measure is defined to be

F̄β =
1

|S|
∑
Si∈S

Fβ(Si).

Given an algorithmic community, precision indicates how many vertices are

actually in the same ground-truth community. Given a ground-truth community,

recall indicates how many vertices are predicted to be in the same community in a

retrieved community. By definition, the precision and the recall are evenly weighted

in F1 measure. On the other hand, the F2 measure puts more emphasis on recall than

precision. The authors in [85] who provided the datasets argue that it is important to

quantify the recall since the ground-truth communities in these datasets are partially

annotated, i.e., some vertices are not annotated to be a part of the ground-truth

community even though they actually belong to that community. This indicates

that it would be reasonable to weight recall higher than precision, which is done by

the F2 measure.

In Table 2.5, we report the average F1 and F2 measures on DBLP, Amazon,

LiveJournal2, and Orkut networks. A higher value indicates better communities.

32

Table 2.6: Running times of different methods on our test networks.

Graph oslom demon bigclam nise-sph-fppr nise-grc-fppr

HepPh 19 mins. 16 secs. 27 secs. 11 mins. 23 secs. 22 secs. 2 mins. 48 secs.
AstroPh 38 mins. 3 secs. 42 secs. 48 mins. 1 secs. 36 secs. 2 mins. 26 secs.

CondMat 20 mins. 39 secs. 50 secs. 7 mins. 21 secs. 36 secs. 1 min. 14 secs.
DBLP 5 hrs. 50 mins. 3 hrs. 53 mins. 7 hrs. 13 mins. 18 mins. 20 secs. 29 mins. 44 secs.

Amazon 2 hrs. 55 mins. 1 hr. 55 mins. 1 hr. 25 mins. 37 mins. 36 secs. 42 mins. 43 secs.
Flickr N/A N/A 69 hrs. 59 mins. 43 mins. 55 secs. 3 hrs. 56 mins.
Orkut N/A N/A 13 hrs. 48 mins. 1 hrs. 16 mins. 4 hrs. 16 mins.

LiveJournal N/A N/A 65 hrs. 30 mins. 2 hrs. 36 mins. 4 hrs. 48 mins.
LiveJournal2 N/A N/A 21 hrs. 35 mins. 2 hrs. 15 mins. 6 hrs. 37 mins.

Myspace N/A N/A > 7 days 5 hrs. 27 mins. 9 hrs. 42 mins.

We see that nise outperforms Bigclam, Demon, and Oslom in terms of both F1

and F2 measures on these networks. Within nise, “spread hubs” seeding is better

than “graclus centers” seeding, and the standard PPR is slightly better than the

Fiedler PPR in most of the cases. So, we see that the standard PPR is useful for

identifying ground-truth communities. This result is also consistent with the recent

observations in [47].

2.4.5 Comparison of Running Times

We compare the running times of the different algorithms in Table 2.6. To

do a fair comparison, we run the single thread versions of Bigclam and nise on

the HepPh, AstroPh, CondMat, DBLP, and Amazon networks. On larger networks

Demon and Oslom fail to complete. So, we switch to the multi-threaded version

of Bigclam and nise with 4 threads for Flickr, Orkut, LiveJournal, LiveJournal2,

and MySpace. We see that nise is the only method which can process the largest

dataset (Myspace) in a reasonable time. On small networks (HepPh, AstroPh,

and CondMat), “nise-sph-fppr” is faster than Demon, Oslom and Bigclam. On

medium size networks (DBLP and Amazon), both “nise-grc-fppr” and “nise-sph-

fppr” are faster than other methods. On large networks (Flickr, Orkut, LiveJournal,

LiveJournal2, Myspace), nise is much faster than Bigclam.

33

Table 2.7: F1 measures with different numbers of communities.

DBLP Amazon
k=20,000 k=30,000 k=20,000 k=30,000

bigclam 16.6% 14.0% 31.9% 22.9%
demon 13.7% 13.7% 16.5% 16.5%
oslom 13.4% 13.4% 32.0% 32.0%
nise-sph-fppr 17.5% 18.8% 47.6% 49.2%
nise-grc-fppr 17.2% 17.6% 45.6% 46.7%

Table 2.8: AUC of conductance-vs-coverage with different numbers of communities.
Lower AUC indicates better communities.

CondMat LiveJournal
k=150 k=250 k=10,000 k=20,000

oslom 0.4285 0.4285 N/A N/A
demon 0.5701 0.5701 N/A N/A
bigclam 0.4762 0.4888 0.9528 0.9535
nise-grc-fppr 0.1090 0.1055 0.1839 0.1780
nise-sph-fppr 0.1118 0.1116 0.1890 0.1834

2.4.6 Varying the Number of Communities

We need to specify the number of communities for nise and Bigclam whereas

Demon and Oslom automatically identify the number of communities. Thus, we

also conduct experiments using different numbers of communities to ensure that our

results are not an extremal case. Table 2.7 shows the F1 scores of each method

with different values of k, the number of communities. The outputs of Demon and

Oslom are not affected by different k, but we include these results for reference.

Also, Table 2.8 shows the AUC of conductance-vs-coverage with different k. We see

that nise consistently outperforms other methods with a reasonable range of k in

terms of both F1 measures and AUC scores even with untuned values of the number

of communities.

34

2.5 Discussion

We now discuss the results from our experimental investigations. First, we

note that nise is the only method that worked on all of the problems. Also, our

method is faster than other state-of-the-art overlapping community detection meth-

ods. Perhaps surprisingly, the major difference in cost between using “graclus cen-

ters” for the seeds and the other seed choices does not result from the expense of

running Graclus. Rather, it arises because the personalized PageRank expansion

technique takes longer for the seeds chosen by Graclus. When the PageRank expan-

sion method has a larger input set, it tends to take longer, and the “graclus centers”

seeding strategy is likely to produce larger input sets because of the neighborhood

inflation and because the central vertices of clusters are likely to be high degree

vertices.

We wish to address the relationship between our results and some prior ob-

servations on overlapping communities. The authors of Bigclam found that the

dense regions of a graph reflect areas of overlap between overlapping communities.

By using a conductance measure, we ought to find only these dense regions – how-

ever, our method produces much larger communities that cover the entire graph.

The reason for this difference is that we use the entire vertex neighborhood as the

restart for the personalized PageRank expansion routine. We avoid seeding exclu-

sively inside a dense region by using an entire vertex neighborhood as a seed, which

grows the set beyond the dense region. Thus, the communities we find likely capture

a combination of communities given by the ego network of the original seed node.

Overall, nise significantly outperforms other state-of-the-art overlapping com-

munity detection methods in terms of run time, cohesiveness of communities, and

ground-truth accuracy. Also, our new seeding strategies, “graclus centers” and

“spread hubs”, are superior than existing methods, thus play an important role in

the success of our seed set expansion method.

35

Chapter 3

A Unified Framework of

Non-exhaustive, Overlapping

Clustering

The empirical success of the personalized PageRank-based algorithm moti-

vates us to investigate the problem of overlapping community detection in a more

principled way. To develop a more principled method, we exploit the connection

between community detection and clustering. We revisit the overlapping commu-

nity detection problem from a clustering perspective. To do that, let us first discuss

the traditional clustering problem. The traditional clustering problem involves ex-

haustively assigning each data point to a single group (or cluster) such that nearby

points are also assigned to the same group. When separations between groups are

clear and the data does not contain any outliers, then classical methods such as

the k-means algorithm may succeed in correctly assigning points to groups in many

realistic data models. Now let us revisit the clustering problem from the perspec-

The materials presented in this chapter have been published in [78]. Joyce formulated the
problems, developed the algorithms, and conducted experiments. Professor Dhillon and Professor
Gleich supervised the work.

36

tive of real-world data in which groups still exist but may lack clean separations

and the data may contain outliers. In this setting, a more reasonable goal is a non-

exhaustive, overlapping clustering where a data point may be outside of any cluster,

and clusters are allowed to overlap with each other.

There is substantial prior research that has examined both of these problems

individually – as would be expected for an area as well studied as clustering. For

example, non-exhaustive clustering is highly related to outlier detection in a dataset,

which itself has an extensive literature. Regarding overlap, both soft-clustering

[17], which only makes probabilistic assignments, and overlapping clustering models

are common [11]. Furthermore, many variations of the k-means algorithm have

been proposed over the years [44] including recent work that considers overlapping

clustering [29], [14], [57]. We discuss the related work in more detail in Chapter 3.3

in the context of the limitations of existing methods and our new contribution. A

key difference between our approach and existing ideas is that we treat the issues of

non-exhaustiveness and overlap in a unified framework.

The result of our investigations is a novel improvement to the k-means clus-

tering objective that enables a parametric trade-off between a clustering quality

measure, overlap among the clusters, and non-exhaustiveness (the number of out-

liers not assigned to any group). To optimize the new objective, we present a simple

iterative algorithm called non-exhaustive, overlapping k-means, or NEO-K-Means

in short. Furthermore, by considering an extension to weighted kernel k-means,

we can also tackle the problem of non-exhaustive, overlapping graph clustering. In

the context of graph clustering, we extend a traditional normalized cut-based graph

clustering objective to the non-exhaustive, overlapping setting, and show that this

extended graph clustering objective is mathematically equivalent to the weighted

kernel NEO-K-Means objective with a specific weight and kernel. This equivalence

enables us to apply our NEO-K-Means algorithm to the overlapping community de-

37

tection problem. Experimental results show that our new objective and algorithm

are effective in finding ground-truth clusters; for the case of graphs, we show that our

algorithm outperforms state-of-the-art overlapping community detection methods.

3.1 Non-exhaustive, Overlapping k-means

Developing a general purpose clustering algorithm is a challenging task. Even

though many different clustering methods have been developed, k-means [55] is still

one of the most popular clustering techniques due to its simplicity and empirical

success [44]. We begin our discussion by briefly reviewing k-means. We then attempt

to formulate an obvious extension of the k-means objective function. However, this

obvious extension has serious limitations; after recognizing this, we propose our final

objective function and a simple iterative algorithm for non-exhaustive, overlapping

clustering.

3.1.1 k-means Clustering

Let us review the standard k-means setting. Given a set of data points

X = {x1,x2, · · ·xn}, k-means seeks a partition of the data points into k clusters

C1, . . . , Ck such that they cover all points (formally, C1 ∪ C2 ∪ · · · ∪ Ck = X), and

the partitions are disjoint (Ci ∩ Cj = ∅ ∀i 6= j). The goal of k-means is to pick the

clusters to minimize the distance from the cluster centroid, or the mean of cluster,

to each of its assigned data points. The k-means objective may be written as:

min
{Cj}kj=1

k∑
j=1

∑
xi∈Cj

‖xi −mj‖2, where mj =

∑
xi∈Cj xi

|Cj |
. (3.1)

It has been shown that minimizing the above objective function is an NP-

hard problem even for just two clusters. However, there is an efficient heuristic k-

means algorithm [55], also known as Lloyd’s algorithm, that proceeds by repeatedly

38

assigning data points to their closest clusters and recomputing cluster centroids.

This algorithm monotonically decreases the objective function.

3.1.2 An Intuitive, but Problematic, Extension

To extend the k-means objective function to a non-exhaustive, overlapping

clustering setting, we first introduce an assignment matrix U = [uij]n×k such that

uij = 1 if xi belongs to cluster j; uij = 0 otherwise. Using this notation, if we seek a

traditional disjoint and exhaustive clustering, the number of ones in the assignment

matrix U should be always equal to n because each data point should be assigned

to exactly one cluster.

On the other hand, in a non-exhaustive, overlapping clustering, there are

no restrictions on the assignment matrix U ; there can be multiple ones in a row,

meaning that a data point can belong to multiple clusters. Also, there can be

rows of all zeros, meaning that some data points can have no membership in any

cluster. Thus, we need to decide how many assignments we will make in U , i.e.,

we need to control the number of ones in U . One way to do this is to consider

UTU which is a k × k matrix whose diagonal entries are equal to cluster sizes.

The trace of UTU is equal to the sum of cluster sizes which is also equal to the

total number of assignments in the assignment matrix U . To control how many

additional assignments we will make in U , we add a constraint that the number of

total assignments in U should be equal to n+αn. We define our “first extension of

k-means” as follows:

min
U

k∑
j=1

n∑
i=1

uij‖xi −mj‖2, where mj =

∑n
i=1 uijxi∑n
i=1 uij

s.t. trace(UTU) = (1 + α)n.

(3.2)

We require α� (k− 1) to avoid assigning each data point to every cluster. Similar

to k-means, the above objective function is designed to minimize the sum of squared

39

distances between every data point to its cluster centroid, but now the assignment

is not necessarily restricted to be disjoint and exhaustive.

However, the seemingly reasonable objective function (3.2) has a limitation.

To illustrate this, we test this objective function on synthetic data. As shown in

the leftmost plot in Figure 3.1, we generate two ground-truth clusters which contain

both overlap and outliers (details about this dataset are described in Chapter 3.4).

Red data points are only assigned to cluster 1, blue data points are only assigned to

cluster 2, green data points are assigned to both of the clusters, and black data points

are not assigned to any cluster. Using a k-means like algorithm, we can optimize

(3.2), and Figure 3.1 (b) shows the clustering result. There are 1,000 data points,

and we set α=0.1 (which is the ground-truth value of α). So, 1,100 assignments

are made in U . We can see that (3.2) fails to correctly recover the ground-truth

clusters. Some data points that are relatively far from the cluster centers are not

assigned to any cluster even though they are not outliers. This result indicates

that just controlling the total number of assignments in U is not enough, and we

need another constraint to correctly control the non-exhaustiveness. Based on these

investigations, we now propose our final objective function in the following chapter.

3.1.3 The NEO-K-Means Objective

Recall that in our first extension of k-means objective function (3.2), we

just added a constraint on the total number of assignments in the assignment ma-

trix U , and it resulted in more false positive outliers than expected. To fix this

problem, we introduce another important constraint which controls the degree of

non-exhaustiveness. To state our new optimization problem, let us define the indica-

tor function I{exp} to be I{exp} = 1 if exp is true; 0 otherwise, and we let 1 denote

a k × 1 column vector having all the elements equal to one. Then, the vector U1

denotes the number of clusters to which each data point belongs. Thus, (U1)i = 0

40

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

Cluster 1
Cluster 2
Cluster 1 & 2
Not assigned

(a) Ground-truth clusters

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

Cluster 1
Cluster 2
Cluster 1 & 2
Not assigned

(b) First extension of k-means

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

Cluster 1
Cluster 2
Cluster 1 & 2
Not assigned

(c) NEO-K-Means

Figure 3.1: (a) Two ground-truth clusters are generated (n=1,000, α=0.1, β=0.005). Green

points indicate overlap between the clusters, and black points indicate outliers. See Chap-

ter 3.4 for details. (b) Our first extension of k-means objective function defined in (3.2)

makes too many outlier assignments and fails to recover the ground-truth. (c) The NEO-K-

Means objective defined in (3.3) adds an explicit term for non-exhaustiveness that enables

it to correctly detect the outliers and find natural overlapping clustering structure which

is very similar to the ground-truth clusters (α and β are automatically estimated by the

heuristics discussed in Chapter 3.1.5).

means that xi does not belong to any cluster. Now, by adding a non-exhaustiveness

constraint to (3.2), we define our NEO-K-Means objective function as follows:

min
U

k∑
j=1

n∑
i=1

uij‖xi −mj‖2, where mj =

∑n
i=1 uijxi∑n
i=1 uij

s.t. trace(UTU) = (1 + α)n,
∑n

i=1 I{(U1)i = 0} ≤ βn.

(3.3)

We allow at most βn data points to be unassigned to any cluster, i.e., at most

βn data points can be considered as outliers. We require 0 ≤ βn and note that

βn � n to cause most data points to be assigned to clusters. Specifically, by the

definition of “outliers”, βn should be a very small number compared to n. The

parameters α and β offer an intuitive way to capture the degree of overlap and non-

exhaustiveness; by “turning the knob” on these parameters, the user can explore the

landscape of overlapping, non-exhaustive clusterings. If α=0 and β=0, the NEO-K-

Means objective function is equivalent to the standard k-means objective presented

in (3.1). To see this, note that setting the parameter β=0 requires every data point

41

to belong to at least one cluster, while setting α=0 makes n assignments. Putting

these together, the resulting clustering will be disjoint and exhaustive. Note that

by setting α=0, objective (3.2) does not have this property.

To see if the objective function (3.3) yields a reasonable clustering, we test it

on the same dataset we used in the previous chapter. Figure 3.1 (c) shows the result

(α and β are automatically estimated by the heuristics discussed in Chapter 3.1.5).

We see that NEO-K-Means correctly finds all the outliers, and produces very similar

overlapping structure to the ground-truth clusters.

3.1.4 The NEO-K-Means Algorithm

We now propose a simple iterative algorithm which monotonically decreases

the NEO-K-Means objective until it converges to a local minimum. Having the hard

constraints in (3.3), we will make n + αn assignments such that at most βn data

points can have no membership in any cluster. Note that the second constraint can

be interpreted as follows: among n data points, at least n− βn data points should

have membership to some cluster. When our algorithm makes assignments of points

to clusters, it uses two phases to satisfy these two constraints. Thus, each cluster

Cj decomposes into two sets C̄j and Ĉj that record the assignments made in each

phase.

Algorithm 5 describes the NEO-K-Means algorithm. We first initialize clus-

ter centroids. Any initialization strategies that are used in k-means may also be

applied to our algorithm. Given cluster centroids, we compute all the distances

[dij]n×k between every data point and every cluster, and record the closest cluster

and corresponding distance for every data point. Then, the data points are sorted

in an ascending order by the distance to its closest cluster. To ensure at least n−βn

data points are assigned to some cluster (i.e., to satisfy the second constraint), we

assign the first n−βn data points to their closest clusters. Let C̄j denote the assign-

42

Algorithm 5 NEO-K-Means

Input: X = {x1,x2, · · ·xn}, the number of clusters k, the maximum number of iterations
tmax, α, β

Output: C1, C2, · · · , Ck
1: Initialize cluster means {mj}kj=1, t = 0.
2: while not converged and t < tmax do
3: Compute cluster means, and then compute distances between every data point and

clusters [dij]n×k.

4: Initialize T = ∅, S = ∅, p = 0, and C̄j = ∅, Ĉj = ∅ ∀j.
5: while p < (n+ αn) do
6: if p < (n− βn) then
7: Assign xi∗ to C̄j∗ such that (i∗, j∗) = argmin

i,j
dij where {(i, j)} /∈ T , i /∈ S.

8: S = S ∪ {i∗}.
9: else

10: Assign xi∗ to Ĉj∗ such that (i∗, j∗) = argmin
i,j

dij where {(i, j)} /∈ T .
11: end if
12: T = T ∪ {(i∗, j∗)}.
13: p = p+ 1.
14: end while
15: ∀j, update clusters Cj = C̄j ∪ Ĉj .
16: t = t+ 1.

17: end while

ments made by this step. Thus,
∑k

j=1 |C̄j | = n− βn. Then, we make βn+αn more

assignments by taking βn+αn minimum distances among [dij]n×k such that xi /∈ C̄j .

Let Ĉj denote the assignments made by this step. Thus,
∑k

j=1 |Ĉj | = βn + αn. Fi-

nally,
∑k

j=1(|C̄j | + |Ĉj |) = n + αn. Once all the assignments are made, we update

cluster centroids by recomputing the mean of each cluster. We repeat this procedure

until the change in objective function is sufficiently small or the maximum number

of iterations is reached. Note that the algorithm does not forcibly choose βn points

as outliers; indeed, the number of outliers is less than βn and depends on the the

distances between data points and their “secondary” clusters. We note that, if α = 0

and β = 0, then the NEO-K-Means algorithm is identical to the standard k-means

algorithm. Our algorithm guarantees monotonic decrease in the objective function

as the following result shows.

Theorem 3. Algorithm 5 monotonically reduces the NEO-K-Means objective in

43

(3.3) while satisfying the constraints specified by α and β.

Proof. Let J (t) denote the objective at the t-th iteration. Then,

J(t) =

k∑
j=1

∑
xi∈C

(t)
j

‖xi −m
(t)
j ‖

2

≥
k∑

j=1

∑
xi∈C̄

(t+1)
j

‖xi −m
(t)
j ‖

2 +

k∑
j=1

∑
xi∈Ĉ

(t+1)
j

‖xi −m
(t)
j ‖

2

=

k∑
j=1

∑
xi∈C

(t+1)
j

‖xi −m
(t)
j ‖

2 since C(t+1)
j = C̄(t+1)

j ∪ Ĉ(t+1)
j

≥
k∑

j=1

∑
xi∈C

(t+1)
j

‖xi −m
(t+1)
j ‖2 (property of centroids)

= J(t+1)

The first inequality follows from the update scheme used to form C̄j and Ĉj by

our algorithm (see steps 7 and 10 in Algorithm 5). Clearly the algorithm always

maintains feasibility, i.e., the constraints specified by the parameters α and β are

always satisfied.

3.1.5 Parameter Selection

We now discuss how to choose the parameters α and β. Since parameter

selection is usually considered as a challenging task, many existing clustering algo-

rithms leave this as an open problem. For example, in k-means-- algorithm [25], the

number of outliers is a required input. Many other clustering methods (e.g., [17],

[14], [57]) also have their own model parameters that should be set by a user. While

some model parameters of other clustering methods tend to be non-intuitive to set

or it can be hard to predict the effect of a particular parameter setting, the NEO-K-

Means parameters α and β are intuitive parameters that allow users to specify how

much overlap/non-exhaustiveness they want. So, users might be able to estimate

these parameters from domain knowledge. If any overlap and outlier statistics are

44

unknown, we can estimate α and β values by using the heuristics discussed in the

following chapters. The high level idea of our parameter estimation is to first run a

disjoint, exhaustive clustering and perform cheap distance-based computation.

Choosing β.

We first run a traditional k-means. Let di denote the distance between data

point xi and its closest cluster. We compute the mean (denoted by µ) and the

standard deviation (denoted by σ) of di (i=1,· · · ,n). If a distance di is greater than

µ+δσ, then we consider the data point xi as an outlier, where δ is a constant which

controls how far from is it from the mean. We empirically observe that usually δ = 6

leads to a reasonable estimate for β.

Choosing α.

We use two different strategies for choosing α. We empirically observe that

the first strategy is better when the overlap is small and the second strategy is better

when the overlap is large.

The first strategy considers the distribution of distances in each cluster. For

each Cj , we consider the distances between the center of Cj and the data points

which are assigned to Cj , and compute the mean (denoted by µj) and the standard

deviation (denoted by σj) of these distances. Then, for a data point xl /∈ Cj , we

compute the distance between xl and Cj , denoted by dlj . If dlj is less than µj + δσj

(usually, −1 ≤ δ ≤ 3.5 gives a good estimate), we consider the data point xl should

be in the overlapped region. In this way, we can count the number of points which

should be considered in the overlapped region, and thus we can estimate α.

The second strategy considers normalized distances. Given a data point xi,

let dij denote the distance between xi and Cj . We compute the normalized distance

which is defined by d̄ij = dij/
∑k

l=1 dil (note that
∑k

l=1 d̄il = 1). Then, we count

45

the number of d̄ij whose value is less than 1/(k + 1). Notice that if a data point is

equidistant from every cluster, then the normalized distance is equal to 1/k. To get

a stronger bound, we set the threshold to be 1/(k+ 1). If the normalized distance is

less than this threshold, we consider that the data point should be in the overlapped

region. In this way, we can estimate the amount of overlap.

3.1.6 Weighted Kernel NEO-K-Means

Now, let us discuss weighted kernel k-means. In kernel k-means, each data

point is first mapped into a higher dimensional feature space, and then clustered

using k-means in the feature space. A weighted version of kernel k-means [32] also

has been introduced to differentiate each data point’s contribution to the objective

function by assigning a weight to each data point. Let φ denote a nonlinear mapping,

and wi denote a nonnegative weight for data point xi. Then, the weighted kernel

k-means objective [32] is defined as follows:

min
{Cj}kj=1

k∑
j=1

∑
xi∈Cj

wi‖φ(xi)−mj‖2, where mj =

∑
xi∈Cj wiφ(xi)∑

xi∈Cj wi
. (3.4)

Most algorithms to optimize this objective exploit the well-known kernel

trick to avoid forming the feature space explicitly and use the kernel matrix of inner

products instead. Let us consider the weighted kernel NEO-K-Means objective

function. Just like in (3.4), we introduce a nonlinear mapping φ and a weight wi for

each data point xi. Then the weighted kernel NEO-K-Means objective is defined as

follows:

min
U

k∑
c=1

n∑
i=1

uicwi‖φ(xi)−mc‖2, where mc =

∑n
i=1 uicwiφ(xi)∑n

i=1 uicwi

s.t. trace(UTU) = (1 + α)n,
∑n

i=1 I{(U1)i = 0} ≤ βn.

(3.5)

46

The extension of NEO-K-Means to the weighted kernel case enables us to

tackle the problem of non-exhaustive, overlapping graph clustering (overlapping

community detection), which we describe in the next chapter.

3.2 Graph Clustering using NEO-K-Means

We first review some of the traditional graph clustering objectives, and then

present an extension of the traditional graph cut objectives to non-exhaustive, over-

lapping clustering setting. We show that this extended graph clustering objective is

equivalent to the weighted kernel NEO-K-Means objective. Thus, we present a prin-

cipled method to compute non-exhaustive, overlapping graph clustering by applying

the NEO-K-Means algorithm.

3.2.1 Graph Clustering via Normalized Cut

Given a graph G = (V, E), the corresponding adjacency matrix is defined

as A = [aij] such that aij is equal to the edge weight between vertex i and j if

there is an edge, and zero otherwise. We assume we are working with undirected

graphs, where the matrix A is symmetric. We also assume that there is no self-loop

in the graph, i.e., the diagonal elements of A are all zeros. The traditional graph

partitioning problem seeks k pairwise disjoint clusters such that C1∪C2∪· · ·∪Ck = V.

Normalized cut [73] is a popular measure to evaluate the quality of a graph

partitioning or graph clustering. Let links(Cp, Cq) denote the sum of edge weights

between two sets Cp, Cq. Then, the normalized cut of a graph is defined as follows:

NCut(G) = min
C1,C2,···Ck

∑k

j=1

links(Cj ,V\Cj)
links(Cj ,V)

. (3.6)

Using a linear algebraic formulation, the normalized cut objective may be

47

expressed as follows:

NCut(G) = min
y1,y2,···yk

k∑
j=1

yTj (D −A)yj

yTj Dyj

= max
y1,y2,···yk

k∑
j=1

yTj Ayj

yTj Dyj
,

(3.7)

where D is the diagonal matrix of vertex degrees, and yj denotes an indicator vector

for cluster Cj , i.e., yj(i) = 1 if a vertex vi belongs to cluster Cj , zero otherwise.

3.2.2 Extending Graph Cut Objectives to Non-exhaustive, Over-

lapping Clustering

Note that the traditional normalized cut objective (3.7) is for disjoint, ex-

haustive graph clustering. To consider non-exhaustive, overlapping graph clustering,

we first introduce an assignment matrix Y = [yij]n×k such that yij=1 if a vertex vi

belongs to cluster Cj ; yij=0 otherwise. Let yj denote jth column of Y . Then, we

can extend (3.7) to non-exhaustive, overlapping graph clustering by introducing the

same constraints as in (3.3):

max
Y

k∑
j=1

yTj Ayj

yTj Dyj

s.t. trace(Y TY) = (1 + α)n,
∑n

i=1 I{(Y 1)i = 0} ≤ βn.

(3.8)

By adjusting α and β, we can control the degree of overlap and non-exhaustiveness.

If α=0, and β=0, the above objective enforces disjoint and exhaustive clustering,

thus is equivalent to the traditional normalized cut objective. We have focused on

the normalized cut objective, but other graph clustering objectives (e.g., ratio as-

sociation [73]) also can be extended to non-exhaustive, overlapping clustering using

the same approach.

48

3.2.3 Equivalence of the Objectives

We now show that (3.5) is equivalent to (3.8) by defining an appropriate

kernel and weights. Let W = [wii]n×n denote a diagonal weight matrix whose

diagonal entries are equal to vertex weights, let K denote a kernel matrix such that

Kij = φ(xi) · φ(xj), and let uc denote the cth column of U . Then, (3.5) can be

rewritten as follows:

min
U

k∑
c=1

n∑
i=1

uicwi‖φ(xi)−mc‖2

= min
U

k∑
c=1

(
n∑
i=1

uicwiKii −
uc

TWKWuc
ucTWuc

)
(3.9)

Let us define the kernel as K ≡ γW−1 + W−1AW−1 where γ is a positive

constant typically chosen to make K positive definite. Then (3.9) can be expressed

as follows:

= min
U

k∑
c=1

(
n∑
i=1

uicwi
γ

wi
− uc

TAuc
ucTWuc

)

= min
U

(
γ(1 + α)n−

k∑
c=1

uc
TAuc

ucTWuc

)

= max
U

k∑
c=1

uc
TAuc

ucTWuc
(3.10)

Now, in (3.10), let us define the weight matrix as W ≡ D. Notice that U = Y

in (3.8). Putting these together, we can see that the weighted kernel NEO-K-Means

objective (3.5) is equivalent to the extended normalized cut objective (3.8).

3.2.4 Algorithm

The equivalence between (3.8) and (3.5) implies that we can optimize the

non-exhaustive, overlapping graph clustering objectives using the weighted kernel

49

NEO-K-Means algorithm. The difference between standard k-means and weighted

kernel k-means is how to compute the distance between a data point and clusters.

Using our definitions of kernel and weights, the distance between a vertex vi and

cluster Cj can be quantified as follows:

dist(vi, Cj) = − 2 links(vi, Cj)
deg(vi) deg(Cj)

+
links(Cj , Cj)
deg(Cj)2

+
γ

deg(vi)
− γ

deg(Cj)
, (3.11)

where deg(vi) denotes the degree of vertex vi, and deg(Cj) denotes the sum of

edge weights of vertices in Cj . Then, Algorithm 5 can be applied to graph data by

computing the distances using (3.11).

Popular software for graph partitioning, e.g., Graclus [32] and Metis [46],

employs a multilevel approach. In this framework, an input graph is coarsened by

merging nodes level by level. As a result, a series of smaller graphs are created.

Once the input graph is coarsened into a small enough graph, an initial partitioning

is performed. The clustering result of the coarsest level graph is first projected onto

the graph at the level above it. Many different heuristics can be used at any of

these coarsening or projection stages in order to improve the overall performance.

The clustering is then refined through a refinement algorithm which plays the most

important role in optimizing an objective function.

We also exploit the multilevel framework for non-exhaustive, overlapping

graph clustering. While we use similar heuristics for coarsening and initial parti-

tioning phases as in [32], we implement the weighted kernel NEO-K-Means algorithm

for the refinement phase. Besides the multilevel refinement, any reasonable initial-

ization can be directly given, and we can apply the weighted kernel NEO-K-Means

algorithm to optimize the non-exhaustive, overlapping graph clustering objective.

50

3.3 Related Work

Both the aspects of overlap and non-exhaustiveness in clustering have been

studied before, albeit rarely considered together in a unified manner as we do. We

recognize that [26] also considers both overlap and non-exhaustiveness by modifying

the traditional k-medoid algorithm, but their methodologies include complicated

heuristics. A few recent papers study the clustering problem with outlier detection.

In particular, [25] have proposed the k-means-- algorithm, which discovers clusters

and outliers in a unified fashion; however it does not find overlapping clusters.

We focus our discussion on overlapping clustering as that literature is the

most closely related to our contribution. Soft clustering methods, such as fuzzy k-

means [17], relax the binary assignment constraint and replace it by a probabilistic

assignment. Thresholding these probabilities may result in both overlapping assign-

ments to clusters and non-exhaustive partitions, although it is difficult to control

these effects. There have been many attempts to extend k-means to overlapping

clustering. For example, [29] defines OKM. However, it has been recognized that

OKM tends to yield large overlap among the clusters, which the restricted OKM

method [14] should address. Separately, [57] also has reformulated the OKM objec-

tive function by adding a sparsity constraint. On the other hand, from the Bayesian

perspective, [11] proposed a generative model, called MOC, where each data point

is assumed to be generated from an exponential family.

In the context of graph clustering, many different types of overlapping graph

clustering, or overlapping community detection methods, have been presented. Com-

pared to our seed-and-grow algorithm which we present in Chapter 2, the NEO-K-

Means algorithm adopts a more principled approach. Among the existing meth-

ods, the scalable alternatives include demon [30] and bigclam methods [85]—which

we compare against. We also compare with oslom [50] which detects outliers and

produces statistically significant overlapping communities. Many other methods are

51

Table 3.1: Vector datasets.

n dim. ¯|C| outliers k

synth1 5,000 2 2,750 0 2
synth2 1,000 2 550 5 2
synth3 6,000 2 3,600 6 2
yeast 2,417 103 731.5 0 14
music 593 72 184.7 0 6
scene 2,407 294 430.8 0 6

discussed in a recent survey [83], although the majority of successful approaches tend

to suffer scalability issues on large networks like those we consider. Our derivation

of the relationship between NEO-K-Means and overlapping community detection is

inspired by [32] which showed the connection between k-means and graph partition-

ing.

3.4 Experimental Results

We show the experimental results of NEO-K-means on both vector data and

graph data.

3.4.1 Vector Data

We compare NEO-K-Means with fuzzy k-means [17] (denoted by fuzzy),

MOC [11] (denoted by moc), OKM [29] (denoted by okm), restricted OKM [14] (de-

noted by rokm), and explicit/implicit sparsity constrained clustering [57] (denoted

by esp and isp, respectively). For NEO-K-Means, we use our methodologies for

estimating α and β (discussed in Chapter 3.1.5). We initialize all the methods using

k-means with exactly the same centroids, run each of the algorithms 5 times, and

pick the assignment matrix which leads to the best objective function value of each

method. If an algorithm happens to return empty clusters or clusters that contain

all the data points, we exclude these clusters when we compute F1 score. Table 3.1

52

Table 3.2: F1 scores on vector datasets. NEO-K-Means (the last column) achieves
the highest F1 score across all the datasets while the performance of other existing
algorithms is not consistent across all the datasets.

moc fuzzy esp isp okm rokm NEO

synth1 0.833 0.959 0.977 0.985 0.989 0.969 0.996
synth2 0.836 0.957 0.952 0.973 0.967 0.975 0.996
synth3 0.547 0.919 0.968 0.952 0.970 0.928 0.996
yeast N/A 0.308 0.289 0.203 0.311 0.203 0.366
music 0.534 0.533 0.527 0.508 0.527 0.454 0.550
scene 0.467 0.431 0.572 0.586 0.571 0.593 0.626

shows a summary of our vector datasets. ‘dim.’ denotes the dimension of the data

points, and ¯|C| denotes the average cluster size.

Synthetic Data.

Three synthetic datasets are generated from the Gaussian distribution. We

first fix the cluster centroid of each cluster, and then draw n − βn data points

from the Gaussian distribution whose mean is the cluster centroid and covariance

matrix is the identity. To create the ground-truth clusters, we first assign all the

data points to its closest cluster, and then make additional assignments by taking

minimum distances such that the total number of non-zeros of the ground-truth

cluster matrix is equal to n+αn. Finally, βn outliers are added to the data matrix,

and these data points are not assigned to any cluster in the ground-truth cluster

matrix.

The first three rows of Table 3.2 shows the F1 scores on the synthetic datasets.

Because the datasets are simple, almost all the methods achieve high F1 scores

(above 0.9) except moc. On synth3, one of the clusters produced by moc contains

all the data points in the cluster. As a result, moc gets a particularly low F1 score

on this dataset. We can see that NEO-K-Means achieves the highest F1 score on all

of the datasets. While synth1 does not contain outliers, synth2 and synth3 contain

53

five and six outliers, respectively. We observe that NEO-K-Means finds the correct

number of outliers, and perfectly finds all the outliers. On the other hand, all the

other baseline methods do not have the functionality of non-exhaustive clustering,

so they assign the outliers to some clusters.

Real-world Data.

We use three real-world multi-label datasets from [1], which are presented in

Table 3.1: ‘yeast’, ‘music’, and ‘scene’. The ‘music’ dataset [76] consists of a set of

feature vectors extracted from 593 different music songs. In this dataset, each song

is labelled by emotions presented in the song, e.g., happy, surprised, relaxing, etc.

Since several different emotions can be expressed in a song, a song can have more

than one label. The ‘scene’ dataset [19] is a set of scene image feature vectors. Each

image can be labelled by their scenes, e.g., beach, sunset, mountain, and an image

can contain more than one scene. The ‘yeast’ dataset [35] is from a biology domain.

This dataset is a set of feature vectors constructed based on micro-array expression

data and phylogenetic profiles of genes. Each gene belongs to multiple functional

classes, so each gene can have multiple labels. On these datasets, we treat each label

as a ground-truth cluster.

The F1 scores are presented in the last three rows of Table 3.2. On the

‘yeast’ dataset, among 14 clusters, moc returns 13 empty clusters and one cluster

that contains all the data points. Thus, we cannot report the F1 score of moc. We

can see that NEO-K-Means always shows the best F1 score while the algorithmic

performance of the other methods varies. For instance, rokm is the worst for ‘music’,

but is the second best for the ‘scene’ dataset.

54

Figure 3.2: Clustering result of NEO-K-Means on Karate Club network. NEO-K-
Means is able to reveal the natural underlying overlapping structure of the network.

3.4.2 Community Detection in Graph Data

Karate Club Network.

As an illustration of the method, we first apply our NEO-K-Means algorithm

on Zachary’s Karate Club network, which is a classical example for testing clustering

algorithms. This network represents friendship relationships between 34 members

in a karate club at a US university in 1970. In this network, node 1 and node 34 are

known to be the instructor and the student founder of the club, respectively. These

two nodes are central in the network forming two natural clusters around them. We

run the NEO-K-Means with α=0.2, and β=0, so in this setting, the algorithm will

make 41 assignments in total, i.e., 7 nodes can belong to both clusters (note that

the number of common friends of node 1 and node 34 is four, so we are looking

for something a little less than twice the obvious overlap). Figure 3.2 shows the

clustering result of NEO-K-Means. We can see that the nodes that are assigned to

both clusters have strong interactions with both of the underlying clusters.

Large Real-world Networks.

For comparisons on large real-world networks, we use four real-world net-

works from [4], which are presented in Table 3.3. We compare the weighted ker-

55

Table 3.3: Graph datasets

No. of vertices No. of edges

Amazon 334,863 925,872
DBLP 317,080 1,049,866
Flickr 1,994,422 21,445,057
LiveJournal 1,757,326 42,183,338

Table 3.4: Average normalized cut of each algorithm on large real-world networks.
Lower normalized cut indicates better clustering. NEO-K-Means achieves the lowest
normalized cut on all the datasets.

demon oslom bigclam nise NEO

Amazon 0.555 0.221 0.392 0.116 0.105
DBLP 0.606 0.355 0.617 0.204 0.188
Flickr N/A N/A 0.596 0.515 0.331
LiveJournal N/A N/A 0.912 0.643 0.373

nel NEO-K-Means algorithm with state-of-the-art overlapping community detec-

tion methods: nise which is our personalized PageRank-based method presented in

Chapter 2, bigclam [85], demon [30], and oslom [50]. For the comparison with nise,

we use ‘graclus centers’ seeding method because it produces better average normal-

ized cut values than ‘spread hubs’ seeding method. As we did in Chapter 2, we set k

to 15,000 for Flickr and LiveJournal, and 25,000 for DBLP and Amazon. For NEO-

K-Means, we set α=10, β=0 for Flickr and LiveJournal, and α=40, β=0.0001 for

DBLP and Amazon. We choose small values of β and large values of α because (i)

we expect that there are graph-based pre-processing techniques that remove obvious

outliers (for example, connected components analysis) and (ii) real-world networks

have vertices in many clusters.

We first compare the methods in terms of the average normalized cut. Recall

that the normalized cut of a graph clustering is computed by (3.6). A lower normal-

ized cut should indicate a better clustering. We compute the average normalized cut

by dividing the total normalized cut by the returned number of clusters. Table 3.4

56

Table 3.5: F1 score of each algorithm on Amazon and DBLP. NEO-K-Means shows
the highest F1 score on Amazon, and comparable F1 score with nise on DBLP.

demon oslom bigclam nise NEO

Amazon 0.165 0.318 0.269 0.467 0.490
DBLP 0.137 0.132 0.151 0.176 0.174

Table 3.6: Average normalized cut and F1 score of NEO-K-Means with different α
and β on Amazon dataset.

α=30,
β=0

α=35,
β=0

α=45,
β=0

α=30,
β=0.0001

α=35,
β=0.0001

α=45,
β=0.0001

ncut 0.107 0.104 0.104 0.106 0.104 0.104
F1 0.488 0.490 0.490 0.488 0.490 0.490

shows the average normalized cut of each algorithm. The demon and oslom pro-

grams fail on the Flickr and LiveJournal networks. We can see that NEO-K-Means

achieves the lowest normalized cut value across all the networks. This indicates that

the weighted kernel NEO-K-Means is effective in optimizing the normalized cut ob-

jective. In Amazon and DBLP, the ground-truth communities are known. Table 3.5

shows F1 scores on these networks. The NEO-K-Means method shows the best F1

score on Amazon, but is slightly outperformed by nise on DBLP. However, we note

that nise is a highly tuned, complicated heuristic, whereas the NEO-K-means algo-

rithm is a more principled method. Table 3.6 shows the results of NEO-K-Means

with different α and β on the Amazon dataset. We can see that the results are not

too sensitive to the particular α and β picked.

57

Chapter 4

Low-Rank Semidefinite

Programming for

Non-exhaustive, Overlapping

Clustering

The iterative NEO-K-Means algorithm (presented in Chapter 3) is fast but

suffers from the classic problem that iterative algorithms for k-means fall into local

minimizers given poor initialization. For a more accurate solution, we continue our

study of the NEO-K-Means objective function by proposing a convex relaxation

(Chapter 4.2). This convex problem can be globally optimized in time and memory

that is polynomial in the input size. The relaxed solution can then be rounded

to a discrete assignment solution. Our experimental results with this algorithm

The materials presented in this chapter have been published in [43]. Joyce and Yangyang
developed and implemented the algorithms, and also conducted experiments. Professor Gleich and
Professor Dhillon supervised the work.

58

show that it results in better objective function values than the previous iterative

algorithm, albeit at a substantial computational cost.

The convex formulation is not without problems. When the NEO-K-Means

problem is relaxed to a convex semi-definite program (sdp), the number of variables

is quadratic in the number of data points. Off-the-shelf sdp solvers such as cvx [40,

39] can then only solve problems with fewer than 100 data points (this is due to a

variety of complexities that arise when our sdp is converted into a standard form for

existing convex solvers). Even small modern datasets have a few thousand points,

and thus a different approach is required.

Consequently, we propose optimizing a low-rank factorization of the sdp

solution matrix (Chapter 4.3). This is a standard technique to tackle large-scale

sdps [21]. The resulting optimization problem is a quadratically constrained prob-

lem with a quadratic objective that can no longer be globally optimized. An aug-

mented Lagrangian procedure, for instance, will only converge to a local minimizer.

Nevertheless, when this approach has been used in the past with high-quality op-

timization methods, it frequently generates solutions that are as good as the global

optimal from convex solvers [21], a fact which has some theoretical justification [22].

Furthermore, similar ideas yielded stability improvements to convex relaxations of

the classic k-means objective [49].

Our new LRSDP algorithm to optimize this non-linear problem can handle

problems with tens of thousands of data points, providing an order of magnitude

increase in scalability over the convex solver. On the problems where we can com-

pare with the convex formulations, we achieve globally optimal objective values. It

also consistently outperforms the iterative algorithm for NEO-K-Means in terms of

objective function value.

Our goal with the new procedure is to produce more accurate and reliable

clusterings than the previous iterative algorithm in the regime of medium-scale

59

disconnected nodes
(a) The disconnected nodes error measure counts the number of nodes that are
disconnected from the largest connected component. These nodes are illustrated
for the cluster in red. (Green nodes are not in that cluster.)

0 0.5 1 1.5 2 2.5 3 3.5 4
0.05

0.1

0.15

0.2

0.25

0.3

Noise

A
ve

ra
ge

 n
or

m
al

iz
ed

 c
ut

random+onelevel neo
multilevel neo
lrsdp

(b) Avg. normalized cut

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

90

100

Noise

N
o.

 o
f d

is
co

nn
ec

te
d

no
de

s

random+onelevel neo
multilevel neo
lrsdp

(c) No. of disconnected points

Figure 4.1: A synthetic study of overlapping community detection on a Watts-
Strogatz cycle graph where each point should be assigned to two clusters: (a) an
illustration of a portion of the cycle with dashed ‘noise’ edges showing the discon-
nected points measure (which is 3); (b) & (c) the results of normalized cut and
the number of disconnected points on graphs with 100 nodes returned by our new
LRSDP procedure compared with two variations of our previous “neo” iterative
algorithms.

problems. This regime is ideal because the new method is more computationally

expensive than the iterative algorithm, which was an efficient procedure designed for

problems with millions of data points. To see the difference between these methods,

we study the behavior on a synthetic problem with community detection on a cycle

graph. The graph is a Watts-Strogatz random graph where each node has edges to

five neighbors on each side of the cycle. We also add random edges based on an

Erdös-Rényi graph with expected degree d, which we consider as noise edges. When

the noise is low, clusterings should respect the cycle structure and be continuous,

connected regions. Hence, we compute an error measure for each cluster based on the

60

number of points disconnected from the largest connected component in the cycle;

this measure is illustrated in Figure 4.1(a). We compare three methods: the straight-

forward iterative NEO-K-Means method with random initialization, a multilevel

variation on that method, and our LRSDP with random initialization. We run 100

trials and plot the the median, 25th and 75th percentiles of the normalized cut scores

and the number of disconnected nodes by varying the noise level. Figure 4.1(b) &

Figure 4.1(c) show the results. Our LRSDP method achieves the best performance

in terms of both the normalized cut and the number of disconnected nodes. We

observe that our LRSDP method often produces 0 disconnected points even as

the noise increases whereas the faster iterative method starts to introduce many

disconnected points with only a modest amount of error.

We now summarize the contributions of our work:

• We propose NEO-SDP: a convex relaxation of a k-means-like objective that

handles non-exhaustive, overlapping clustering problems (Chapter 4.2).

• We formulate the scalable NEO-LR objective and an LRSDP algorithm to

optimize a low-rank factorization of the NEO-SDP solution (Chapter 4.3).

• We also propose a series of initialization and rounding strategies that accelerate

the convergence of our optimization procedures (Chapter 4.3.3).

• We evaluate LRSDP on real-world data clustering problems and find it achieves

the best F1 performance with respect to ground-truth clusters (Chapter 4.5.3).

• For graph clustering problems, LRSDP produces the best quality communities

among all clustering algorithms on real-world networks (Chapter 4.5.4).

4.1 Low-Rank Factorizations of SDPs

Semidefinite programs (sdps) are one of the most general classes of tractable

convex optimization problems. The canonical form and low-rank variation are:

61

xi the data points for k-means §3.1
k the number of clusters
α the overlap parameter (0 means no overlap)

β the outlier parameter (0 means no outliers)

U the assignment matrix for a solution §3.1

Z the co-occurence matrix for the SDP relaxation §4.2
K the kernel matrix for NEO-K-Means

W a diagonal weight matrix for weighted problems

d a specialized weight vector for the SDP relaxation
f the cluster count variable for the SDP relaxation

g the outlier indicator for the SDP relaxation

Y the low-rank approximation of Z in NEO-LR §4.3

Table 4.1: A summary of the notation used in the NEO-K-Means problem, the final
assignment, and the SDP and low-rank approximations.

Canonical SDP

maximize trace(CX)

subject to X � 0,X =XT ,

trace(AiX) = bi

i = 1, . . . ,m

Low-rank SDP

maximize trace(CY Y T)

subject to Y : n× k

trace(AiY Y
T) = bi

i = 1, . . . ,m

Notice the low-rank form drops the positive semidefinite (X � 0) and symmetry

constraints (X = XT) but replaces X = Y Y T , which automatically satisfies these

constraints. Canonical sdps can be optimized by a variety of solvers such as cvx [40],

[39]. Low-rank SDP factorizations are non-convex and can be locally optimized via

an augmented Lagrangian method [21].

4.2 An SDP for NEO-K-Means

We begin by stating an exact sdp-like program for the weighted kernel NEO-

K-Means objective and then describe how to relax it to an sdp. We use the same

notation as the previous chapter and summarize our common notation in Table 4.1.

The essential idea with the sdp-like version is that we replace the assignment matrix

62

U with a normalized cluster co-occurrence matrix Z:

Z =

k∑
c=1

Wuc(Wuc)
T

sc

where W is a diagonal matrix with the data point weights wi on the diagonal,

uc is the c-th column of matrix U and sc = uTcWuc. When Z is defined from

an assignment matrix U , then values of Zij are non-zero when items co-occur in

a cluster. With appropriate constraints on the matrix Z, it serves as a direct

replacement for the assignment matrix U .

To state the problem, let K denote the kernel matrix of the data points, e.g.,

if X is the data matrix whose rows correspond to data vectors, then K = XXT

is just the simple linear kernel matrix. Let d be a vector where di = wiKii, i.e., a

weighted diagonal from K. We need two new types of variables as well:

• Let f denote a vector of length n such that the i-th entry indicates the number

of clusters that data point i belongs to.

• Similarly, let g denote a vector of length n such that the i-th entry is one if

that data point i belongs to any clusters, and zero if the data point does not

belong to any cluster.

Finally, we denote by e the vector of all 1s.

The following program is equivalent to the NEO-K-Means objective with a

discrete assignment matrix:

63

maximize
Z,f ,g

trace(KZ)− fTd

subject to trace(W−1Z) = k, (a)

Zij ≥ 0, (b)

Z � 0,Z = ZT (c)

Ze = W f , (d)

eT f = (1 + α)n, (e)

eTg ≥ (1− β)n, (f)

f ≥ g, (g)

rank(Z) = k, (h)

f ∈ Zn≥0,g ∈ {0, 1}n. (i)

(4.1)

We omit the verification that this is actually equivalent to the NEO-K-Means

objective as it is not informative for our discussion. Constraints (a), (b), (c), and

(h) encode the fact that Z must arise from an assignment matrix. Constraints

(d), (e), (f), (g), and (i) are new to our NEO-K-Means formulation that express the

amount of overlap and non-exhaustiveness in the solution. This is a mixed-integer,

rank constrained sdp. As such, it is combinatorially hard to optimize just like the

original NEO-K-Means objective.

The constraints that make this a combinatorial problem are (h) and (i). If

we relax these constraints:

maximize
Z,f ,g

trace(KZ)− fTd

subject to (a), (b), (c), (d), (e), (f), (g)

0 ≤ g ≤ 1

(4.2)

then we arrive at a convex problem. Thus, any local optimal solution of (4.2) must

be a global solution.

Solving (4.2) requires a black-box sdp solver such as cvx. As it converts this

64

problem into a standard form for such problems, the number of variables becomes

O(n2) and the resulting complexity is worse than O(n3) in most cases, and can be as

bad as O(n6). These solvers are further limited by the delicate numerical precision

issues that arise as they approach a solution. The combination of these features

means that off-the-shelf procedures struggle to solve problems with more than 100

data points. We now describe a means to enable us to solve larger problems.

4.3 A Low-Rank SDP for NEO-K-Means

In the sdp formulation of the NEO-K-Means objective (4.2), the matrix

Z should only be rank k. By applying the low-rank factorization idea, Z becomes

Y Y T where Y is n×k and non-negative. Thus, the following optimization program

is a low-rank sdp for (4.2) (we have chosen to write it in the standard form of a

minimization problem with explicit slack variables s, r to convert the inequality

constraints into equality and bound constraints).

minimize
Y ,f ,g,s,r

fTd− trace(Y TKY)

subject to k = trace(Y TW−1Y) (s)

0 = Y Y Te−W f (t)

0 = eT f − (1 + α)n (u)

0 = f − g − s (v)

0 = eTg − (1− β)n− r (w)

Yij ≥ 0, s ≥ 0, r ≥ 0

0 ≤ f ≤ ke, 0 ≤ g ≤ 1

(4.3)

Here we also replaced the constraint Y Y T ≥ 0 with the stronger constraint Y ≥ 0.

This problem is a quadratic programming problem with quadratic constraints, and

we will discuss how to solve it in the next chapter. We call the problem NEO-LR and

65

the solution procedure LRSDP. Even though now we lose convexity by formulating

the low rank sdp, this nonlinear programming problem only requires O(nk) memory

and existing nonlinear programming techniques allow us to scale to large problems.

After we get a solution, the solution Y can be regarded as the normalized

assignment matrix

Y = WÛ

where Û = [û1, û2, . . . , ûk], and ûc = uc/
√
sc for any c = 1, . . . , k.

4.3.1 Solving the NEO-K-Means Low-Rank SDP

To solve the NEO-LR problem (4.3), we use an augmented Lagrangian frame-

work. This is an iterative strategy where each step consists of minimizing an aug-

mented Lagrangian of the problem that includes a current estimate of the Lagrange

multipliers for the constraints as well as a penalty term that drives the solution

towards the feasible set. Augmented Lagrangian techniques have been successful in

previous studies of low-rank sdp approximations [21].

Let λ = [λ1;λ2;λ3] be the Lagrange multipliers associated with the three

scalar constraints (s), (u), (w), and µ and γ be the Lagrange multipliers associ-

ated with the vector constraints (t) and (v), respectively. Let σ ≥ 0 be a penalty

66

parameter. The augmented Lagrangian for (4.3) is:

LA(Y, f ,g, s, r;λ,µ,γ, σ) =

fTd− trace(Y TKY)︸ ︷︷ ︸
the objective

− λ1(trace(Y TW−1Y)− k)

+
σ

2
(trace(Y TW−1Y)− k)2

− µT (Y Y Te−W f)

+
σ

2
(Y Y Te−W f)T (Y Y Te−W f)

− λ2(eT f − (1 + α)n) +
σ

2
(eT f − (1 + α)n)2

− γT (f − g − s) +
σ

2
(f − g − s)T (f − g − s)

− λ3(eTg − (1− β)n− r)

+
σ

2
(eTg − (1− β)n− r)2

(4.4)

At each step in the augmented Lagrangian solution framework, we solve the following

subproblem:

minimize LA(Y , f ,g, s, r;λ,µ,γ, σ)

subject to Yij ≥ 0, s ≥ 0, r ≥ 0,

0 ≤ f ≤ ke, 0 ≤ g ≤ 1.

(4.5)

We use a limited-memory BFGS with bound constraints algorithm [24] to minimize

the subproblem with respect to the variables Y , f , g, s and r. This requires compu-

tation of the gradient of LA with respect to the variables. We determine and validate

an analytic form for the gradient in [43]. In Chapter 4.5.1, we provide evidence that

our optimization procedure is correctly implemented. Those experiments also show

that we achieve the same objective function values as the convex formulation (4.2)

in a small fraction of the time.

67

Algorithm 6 Rounding Y to a binary matrix U
Input: Y , W , f , g, α, β
Output: U

1: Update Y = W−1Y
2: Set D to be the largest (n− βn) coordinates of g
3: for each entry i in D do
4: Set S to be the top bfic entries in Y (i, :)
5: Set U(i,S) = 1 /* Assign i to S */
6: end for
7: Set f̄ = f − bfc
8: Set R to be the largest entries in f̄
9: for each entry i in R do

10: Pick a cluster ` where Y (i, `) is the maximun over all clusters where i is not currently
assigned

11: Set U(i, `) = 1

12: end for

4.3.2 Rounding Procedure

Solutions from the the LRSDP method are real-valued. We need to convert

Y into a binary assignment matrix U through a rounding procedure. Both the

vectors f and g provide important information about the solution. Namely, f gives

us a good approximation to the number of clusters each data point is assigned to,

and g indicates which data points are not assigned to any cluster.

The procedure we use for rounding solutions Y that arise when we run

LRSDP on a unweighted kernel matrix K is given by Algorithm 6. It uses the

largest n − βn entries of the vector g to determine the set of nodes to assign first.

Each data point i is assigned to bfic clusters based on the values in the ith row

of Y . The remaining assignments are all based on the largest residual elements in

f − bfc.

For our experiments with overlapping community detection, we found the

following simple alternative rounding strategy more successful. Select the top (1 +

α)n entries in W−1Y as the clustering assignment.

68

4.3.3 Practical Improvements

Finally, we describe a set of practical improvements for our method. These

are designed to accelerate the convergence of the augmented Lagrangian framework

by moving it closer to a point that satisfies the constraints and is nearly optimal.

They are designed based on commonly used strategies in the relax-and-round ap-

proach to discrete optimization problems.

Final rounding. At the conclusion of our rounding procedure, we have an

assignment of points to clusters. We then use that as the initial cluster assignments

for the iterative NEO-K-Means procedure. Since that procedure has monotone

convergence behavior, this can only improve the solution.

Initialization. We run the iterative NEO-K-Means algorithm multiple

times and use the result with the best objective function value as the initializa-

tion to LRSDP. For problems over a few hundred data points, this procedure results

in faster convergence and better final solutions.

Sampling. For vector datasets without feature maps, we found that first

using LRSDP on sampling 10% of the data points, then using this LRSDP solution

as an initialization of the iterative algorithm produces similarly good results as using

LRSDP on all the data points while taking significantly less time.

Hierarchical results. For overlapping community detection on large graph

data (e.g., the HepPh and AstroPh datasets we show later), we apply a two-level hi-

erarchical clustering. In the first level, we use LRSDP with k′ =
√
k, α′ =

√
1 + α−1

and unchanged β, then in the second level, we run LRSDP with k′, α′ and β′ = 0 for

each cluster at level 1. These parameter settings produce a final assignment result

with a total of (1 + α)n assignments in k clusters.

69

4.4 Related Work

This work is most strongly related to convex relaxations of the k-means

objective [49] and related sdp formulations of k-means [67], [68]. For instance, [49]

employs the same general strategy of using a low-rank factorization of the SDP for

k-means in concert with an augmented Lagrangian solver for the resulting nonlinear

optimization problem. Even more generally, our work fits into the broad setting of

convex relaxations of clustering problems including normalized cut objectives [84].

Recently, there was a proposal for a different type of convex clustering

method [54], [41] which is also based on k-means. The key difference is that these

relaxations model a centroid point for each data point and then attempt to penalize

differences among the centroids. It is related to the lasso and the fused lasso proce-

dures. As a convex optimization problem, it suffers the same issues as the existing

sdp relaxations of k-means, namely, a quadratic number of variables to optimize.

Using augmented Lagrangian methods to solve low-rank factorizations of sdp

solutions has a long history of delivering successful performance when the data arise

from graphs. For instance, [21] originally proposed this idea for the max-cut and

minimum bisection sdps. Later, similar ideas were used to address key weaknesses

in spectral clustering [51] on power-law graphs.

4.5 Experimental Results

We begin by validating our implementation and comparing our solutions

against the global optima from the cvx program. We then show the effectiveness of

LRSDP as an initialization method of the iterative NEO-K-Means algorithm which

is a simple greedy algorithm designed for optimizing the NEO-K-Means objective

function. Finally, we show experimental results on vector and graph clustering

problems by comparison with state-of-the-art clustering and community detection

70

Table 4.2: Comparison of SDP and LRSDP (objective value and run time). The
small differences between the objective values are the result of differences in solution
tolerances and precision in the sub-problems.

Objective value Run time
SDP LRSDP SDP LRSDP

dolphins

k=2, α=0.2, β=0 -1.968893 -1.968329 107.03 secs. 2.55 secs.
k=2, α=0.2, β=0.05 -1.969080 -1.968128 56.99 secs. 2.96 secs.
k=3, α=0.3, β=0 -2.913601 -2.915384 160.57 secs. 5.39 secs.
k=3, α=0.3, β=0.05 -2.921634 -2.922252 71.83 secs. 8.39 secs.

les miserables

k=2, α=0.2, β=0 -1.937268 -1.935365 453.96 secs. 7.10 secs.
k=2, α=0.3, β=0 -1.949212 -1.945632 447.20 secs. 10.24 secs.
k=3, α=0.2, β=0.05 -2.845720 -2.845070 261.64 secs. 13.53 secs.
k=3, α=0.3, β=0.05 -2.859959 -2.859565 267.07 secs. 19.31 secs.

methods.

4.5.1 Algorithmic Validation

We measure the objective function values produced by LRSDP compared

with the convex formulation of the problem and solved by cvx. We consider two

graph clustering problems using the ‘dolphins’ [58] and ‘les miserables’ [48] datasets.

The ‘dolphins’ network represents frequent associations between 62 dolphins (there

are 159 undirected edges in the network), and ‘les miserables’ network represents

the co-appearance of characters in the novel Les Miserables (there are 77 nodes and

254 edges). Table 4.2 shows the results. We try a set of different configurations with

k, α, and β. We compare the run time of cvx solver and LRSDP and find that

LRSDP is roughly an order of magnitude faster than cvx. In Table 4.2, we report

the objective values before the relaxed solution is rounded to a discrete assignment

solution to precisely measure how much our solution is different from the solution

returned by cvx. We can see that the objective values returned from cvx and

returned from our LRSDP solver are essentially identical—they are different in light

of the solution tolerances given by the methods. Therefore, in these cases, we are

successful in finding a globally optimal solution.

71

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

Cluster 1
Cluster 2
Cluster 1 & 2
Not assigned

(a) Ground-truth clusters

−6 −4 −2 0 2 4 6
−2

0

2

4

6

8

10

Cluster 1
Cluster 2
Cluster 1 & 2
Cluster 3
Not assigned

(c) Ground-truth clusters

−6 −4 −2 0 2 4 6
−2

0

2

4

6

8

10

Cluster 1
Cluster 2
Cluster 1 & 2
Cluster 3
Not assigned

(d) LRSDP initialization

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

Cluster 1
Cluster 2
Cluster 1 & 2
Not assigned

(b) k-means/LRSDP initial-
ization

−6 −4 −2 0 2 4 6
−2

0

2

4

6

8

10

Cluster 1
Cluster 2
Cluster 1 & 2
Cluster 3
Not assigned

(e) Success of k-means initial-
ization

−6 −4 −2 0 2 4 6
−2

0

2

4

6

8

10

Cluster 1
Cluster 2
Cluster 1 & 2
Cluster 3
Not assigned

(f) Failure of k-means initial-
ization

Figure 4.2: The output of NEO-K-Means algorithm with two different initialization
methods on two synthetic datasets. (a) & (b) On a simple dataset, NEO-K-Means
can easily recover the ground-truth clusters with k-means or LRSDP initialization.
(c)–(f) LRSDP initialization allows the NEO-K-Means algorithm to consistently
produce a reasonable clustering structure whereas k-means initialization sometimes
(4 times out of 10 trials) leads to a failure in recovering the underlying clustering
structure.

4.5.2 Motivating Example

Now, we show how we can exploit the benefit of LRSDP by using it as an

initialization of the simple iterative NEO-K-Means algorithm. We consider two

synthetic datasets shown in Figure 4.2(a) & Figure 4.2(c). In these datasets, green

data points indicate the overlapped region between clusters, and black data points

indicate outliers which are not supposed to belong to any cluster. The first dataset

was considered in Chapter 3. We run the iterative NEO-K-Means algorithm on

these datasets with two different initialization methods: k-means and LRSDP. On

a simpler dataset, Figure 4.2(a), we observe that the NEO-K-Means can always

recover the underlying clustering structure regardless of the initialization methods.

72

Table 4.3: Real-world vector datasets.

n dim. ¯|C| k

yeast 2,417 103 731.5 14
music 593 72 184.7 6
scene 2,407 294 430.8 6

However, on Figure 4.2(c), we observe the advantages of LRSDP over the k-means

initialization. When we use the LRSDP initialization, the NEO-K-Means always

yields a similar clustering structure as the ground-truth clusters as shown in Figure

4.2(d). On the other hand, when the k-means initialization is used, the NEO-K-

Means fails to recover the underlying clustering structure 4 times out of 10 trials as

shown in Figure 4.2(f). Thus, we see that on more complicated datasets, the dangers

of bad initialization and being stuck in local minima become clearer, and LRSDP

provides a more stable initialization, which enables the NEO-K-Means algorithm to

consistently produce a reasonable clustering.

4.5.3 Data Clustering

We show some experimental results on real-world vector datasets. We use

three multi-label datasets which we get from [1]. Table 4.3 presents some basic

statistics of these datasets (‘dim.’ denotes the dimensionality of the vectors and ¯|C|

denotes the average size of the ground-truth clusters). As we did in Chapter 3, on

these datasets, we treat each label as a ground-truth cluster.

To see the effectiveness of our LRSDP method, we compare LRSDP us-

ing a final iterative NEO-K-Means improvement step. This method is denoted by

‘lrsdp+neo’. Also, we used the sampling method with 10% of the data points.

This method is denoted by ‘slrsdp+neo’. We compare these LRSDP approaches

with the iterative NEO-K-Means initialized by the traditional k-means (denoted by

‘kmeans+neo’). We run each method five times, and Table 4.4 shows the best, worst,

average, and the standard deviation of the NEO-K-Means objective function values.

73

Table 4.4: Comparison of NEO-K-Means objective function values.

worst best avg.±std.

YEAST
kmeans+neo 9611 9495 9549± 51
lrsdp+neo 9440 9280 9364± 60
slrsdp+neo 9471 9231 9367± 90

MUSIC
kmeans+neo 87779 70158 77015±7658
lrsdp+neo 82323 70157 75923±5936
slrsdp+neo 82336 70159 75926±5940

SCENE
kmeans+neo 18905 18745 18806± 66
lrsdp+neo 18904 18759 18811± 58
slrsdp+neo 18895 18760 18810± 55

Within all these methods, α and β values are automatically detected as described

in Chapter 3. A lower objective value indicates a better clustering. We can see that

there is a significant difference in the objective value between ‘kmeans+neo’ and

LRSDP methods (‘lrsdp+neo’ and ‘slrsdp+neo’) on ‘yeast’ and ‘music’ datasets.

By using the LRSDP solution as the initialization of the iterative algorithm, we can

achieve a better objective function value for two of the datasets. This implies that

LRSDP is effective in optimizing the NEO-K-Means objective, and thus provides a

good initialization of the iterative algorithm. We note that the benefit of LRSDP on

‘scene’ dataset is not significant, but we also note that on this dataset, the average

behavior of all methods is roughly the same. In this case, the overlaps among the

ground-truth clusters are very small (the ground-truth α is 0.074) which implies

that the traditional k-means should be a highly accurate initialization.

We also compare the clustering performance with other state-of-the-art clus-

tering methods including model-based overlapping clustering [11], denoted by moc,

explicit/implicit sparsity constrained clustering [57], denoted by esp, and isp, re-

spectively, and overlapping k-means [29], denoted by okm. All these clustering

methods are initialized by k-means, and executed five times. To see the clustering

performance, we compute the F1 score which measures the matching between algo-

rithmic solutions and the ground-truth clusters. Higher F1 scores indicate improved

74

Table 4.5: F1 scores on real-world vector datasets.

worst best avg.±std.

YEAST

moc N/A N/A N/A
esp 0.274 0.289 0.284±0.006
isp 0.232 0.256 0.248±0.010
okm 0.311 0.323 0.317±0.004
kmeans+neo 0.356 0.366 0.360±0.004
lrsdp+neo 0.390 0.391 0.391±0.001
slrsdp+neo 0.369 0.391 0.382±0.011

MUSIC

moc 0.530 0.544 0.538±0.006
esp 0.514 0.539 0.526±0.011
isp 0.506 0.539 0.517±0.013
okm 0.524 0.531 0.527±0.003
kmeans+neo 0.526 0.551 0.543±0.011
lrsdp+neo 0.537 0.552 0.545±0.008
slrsdp+neo 0.541 0.552 0.547±0.005

SCENE

moc 0.466 0.470 0.467±0.002
esp 0.569 0.582 0.575±0.005
isp 0.586 0.609 0.598±0.010
okm 0.571 0.576 0.573±0.002
kmeans+neo 0.597 0.627 0.610±0.015
lrsdp+neo 0.610 0.614 0.613±0.002
slrsdp+neo 0.605 0.625 0.613±0.008

matches with the ground-truth clusters. Table 4.5 shows F1 scores of each algo-

rithm on the real-world datasets. On the ‘yeast’ dataset, moc produces 13 empty

clusters and one cluster which contains all the data points, so we cannot report F1

score of moc on this dataset. We first note that the NEO-K-Means-based meth-

ods (‘kmeans+neo’, ‘lrsdp+neo’, and ‘slrsdp+neo’) are consistently better than the

other clustering methods; and, the LRSDP methods are able to achieve better F1

scores than the other methods.

4.5.4 Overlapping Community Detection

The iterative NEO-K-Means method and our new LRSDP method can both

be used for overlapping community detection because optimizing the NEO-K-Means

75

Figure 4.3: Visualization of the clustering result of LRSDP on ‘dolphins’ network.
Blue nodes only belong to cluster 1, red nodes only belong to cluster 2, and green
nodes belong to both of the clusters.

Table 4.6: Real-world network datasets.

No. of vertices No. of edges

Facebook1 348 2,866
Facebook2 756 30,780
HepPh 11,204 117,619
AstroPh 17,903 196,972

objective function corresponds to optimizing an extended version of normalized cut.

To see whether LRSDP produces a reasonable clustering structure on graphs, we

visualize the clustering result of LRSDP (k=2, α=0.2, β=0) on the ‘dolphins’ net-

work [58] in Figure 4.3. There are two clusters where green nodes indicate the

overlapped region (blue and green nodes form one cluster, and red and green nodes

form the other cluster). Notice that the green nodes have many interactions with

both of the clusters, which shows that LRSDP produces a plausible solution aligned

with an intuitive clustering structure.

Next, we consider real-world networks from [4]. We use four different net-

works which are summarized in Table 4.6. Facebook1 and Facebook2 are social

76

Table 4.7: Average normalized cut of the iterative multilevel NEO-K-Means and
LRSDP

multilevel neo LRSDP

Facebook1 0.371 0.279
Facebook2 0.331 0.223
HepPh 0.185 0.169
AstroPh 0.240 0.201

networks, and HepPh and AstroPh are collaboration networks. To run LRSDP

on the two large networks, HepPh and AstroPh, we use a hierarchical clustering

which we discussed in Chapter 4.3.3. Table 4.7 shows the comparison of the average

normalized cut between the multilevel NEO-K-Means algorithm and LRSDP. The

multilevel NEO-K-Means (denoted by ‘multilevel neo’ or ‘m-neo’) is a variation of

the iterative NEO-K-Means algorithm where the graph clustering problem is solved

at multiple scales. We also use the multilevel NEO-K-Means as the final improve-

ment step of LRSDP as we briefly discussed in Chapter 4.3.3. We see that LRSDP

achieves the lower normalized cut than the multilevel NEO-K-Means, which indi-

cates that LRSDP is beneficial to optimizing the objective function. Within these

methods, we set k=32, α=3, β=0 on Facebook networks. On large networks, we

determine α and β values based on the statistics of the output of nise method.

We also compare with other state-of-the-art overlapping community detec-

tion methods including demon [30], bigclam [85], oslom [50], and nise (presented

in Chapter 2). Let us first note that the runtime of LRSDP is competitive with

other state-of-the-art approaches. For example, on the HepPh network with k=100,

LRSDP took 18 minutes whereas oslom method took 19 minutes and bigclam method

took 11 minutes. On the other hand, the multilevel NEO-K-Means algorithm com-

pleted in less than 10 seconds. Thus, our approaches and algorithms would be more

suitable for applications where getting a high-quality clustering is more important

than getting faster results. This is the case, for instance, in modern biology and

77

Table 4.8: AUC of conductance-vs-graph coverage

Facebook1 Facebook2 HepPh AstroPh

bigclam 0.830 0.640 0.625 0.645
demon 0.495 0.318 0.503 0.570
oslom 0.319 0.445 0.465 0.580
nise 0.297 0.293 0.102 0.153
m-neo 0.285 0.269 0.206 0.190
LRSDP 0.222 0.148 0.091 0.137

neuroscience data. A recently collected network of the rat brain required “more

than 4,000 hours to compile” [3]. On this time scale, the quality of the final results

is paramount.

We evaluate the quality of communities based on the conductance score which

is one of the most commonly used metrics to evaluate the cohesiveness of commu-

nities. In particular, we compute the area under the curve (AUC) in a plot of

conductance-vs-graph coverage as we did in Chapter 2. A lower AUC score in-

dicates a better clustering. Table 4.8 shows the results. We can see that LRSDP

achieves the lowest AUC score across all the datasets, which implies that it produces

the most coherent communities.

4.6 Further Extension: Fast Multiplier Methods

There have been recent developments in fast alternating methods and proxi-

mal methods for convex and nearly convex objectives that arise in machine learning.

We recently propose two variations on the low-rank approximation (4.3) that can uti-

lize some of these techniques for even more scalability. In particular, we propose two

fast multiplier methods to accelerate the convergence of an augmented Lagrangian

scheme: a proximal method of multipliers and an alternating direction method of

multipliers (ADMM). For the proximal augmented Lagrangian or proximal method

of multipliers, we show a convergence result for the non-convex case with bound-

78

constrained subproblems. These methods are up to 13 times faster—with no change

in quality—compared with a standard augmented Lagrangian method on problems

with over 10,000 variables bringing runtimes down from over an hour to around 5

minutes. This work is currently under review [42].

79

Chapter 5

Non-exhaustive, Overlapping

Co-clustering

We now discuss how we can extend our NEO-K-Means ideas to co-clustering

problems. The goal of co-clustering is to simultaneously identify a clustering of the

rows as well as the columns of a data matrix. Indeed, the co-clustering problem

can be thought as a clustering of a bipartite graph. For example, in recommender

systems, users have ratings on items and this can be represented by a bipartite

graph where users and items are denoted by two different types of nodes, and the

ratings are denoted by weighted edges between the users and the items. In this

setting, traditional co-clustering algorithms find a disjoint and exhaustive clustering

of each type of the nodes (e.g., clustering of users and clustering of items), and the

clusterings of the two different types of the nodes are produced simultaneously.

As we described the NEO-K-Means problem in the previous chapters, in

real-world datasets, the clusters may overlap with each other, and there are often

outliers that should not belong to any cluster. To find overlapping clusters as well

as outliers on both of the two different types of the nodes in the bipartite graph,

we formulate the Non-Exhaustive, Overlapping Co-Clustering (NEO-Co-Clustering)

80

problem. To encode this problem mathematically, we extend our NEO-K-Means

objective function to the co-clustering setting. In our NEO-Co-Clustering objective

function, the main idea is to minimize the distance between each entry in a two-

dimensional data matrix and the mean of its co-clusters.

To optimize the new objective function, we also develop a simple iterative

algorithm we call the NEO-Co-Clustering algorithm (NEO-CC in short). The NEO-

CC algorithm adopts an alternating minimization strategy, and we prove that it

monotonically decreases the NEO-Co-Clustering objective function. Finally, we con-

duct experiments on micro-array gene expression data and user-movie ratings data

and observe that our NEO-CC algorithm is able to effectively capture the underly-

ing co-clustering structure of the data, which results in boosting the performance of

a standard one-dimensional clustering.

5.1 Preliminaries

We first describe the minimum sum-squared residue co-clustering objective

function [28] which is an intuitive co-clustering objective function for the traditional

disjoint and exhaustive co-clustering. Also, we briefly review the NEO-K-Means

objective function.

5.1.1 Minimum Sum-Squared Residue Co-Clustering

Let us consider a two-dimensional data matrix X ∈ Rn×m. In the traditional

co-clustering setting, the problem is to partition X ∈ Rn×m into k row clusters and

l column clusters. To denote each dimension of the data matrix, let X r denote the

set of data points for row clustering, and X c denote the set of data points for column

clustering. Then, the co-clustering problem is to cluster X r = {x1,x2, . . . ,xn} into

{C1, C2, . . . , Ck}, and cluster X c = {x1,x2, . . . ,xm} into {C1, C2, . . . , Cl} where the

clusters are pairwise disjoint and every data point is assigned to some cluster. Let

81

us define the following functions:

f : {x1,x2, . . . ,xn} → {C1, C2, . . . , Ck}

g : {x1,x2, . . . ,xm} → {C1, C2, . . . , Cl}

where f(xi) = Cp indicates a data point xi ∈ X r belongs to a row cluster Cp;

g(xj) = Cq indicates a data point xj ∈ X c belongs to a column cluster Cq.

The minimum sum-squared residue (MSSR) co-clustering [28] objective func-

tion considers the difference between each entry in the co-cluster and the mean of

the co-cluster, which can be represented by

xij −
∑

xp∈f(xi),xq∈g(xj)
xpq

|f(xi)||g(xj)|
,

where xij denotes the i-th row and the j-th column entry in X. Let U = [uij]n×k

denote the assignment matrix for row clustering, and V = [vij]m×l denote the

assignment matrix for column clustering. Also, let Û = [
u1√
n1
, · · · , uk√

nk
] denote a

normalized assignment matrix where uc is the c-th column of U and nc is the size

of cluster c. Then, the MSSR co-clustering objective function is defined to be

minimize
U ,V

‖X − ÛÛTXV̂ V̂ T ‖2F . (5.1)

This MSSR co-clustering objective function has a close relationship with the stan-

dard k-means objective function in the sense that if each column vector (i.e., xj ∈

X c) is in a cluster by itself, (5.1) is the k-means objective function for the clustering

of X r.

82

5.1.2 Revisit of the NEO-K-Means Objective

Let us briefly review the NEO-K-Means objective function presented in

Chapter 3. Note that the NEO-K-Means objective function is intended to encode

one-sided clustering. The NEO-K-Means objective function is defined as follows:

minimize
U

k∑
j=1

n∑
i=1

uij‖xi −mj‖2, where mj =

∑n
i=1 uijxi∑n
i=1 uij

subject to trace(UTU) = (1 + α)n,
∑n

i=1
I{(U1)i = 0} ≤ βn,

(5.2)

where there are n data points and k clusters, xi denotes the i-th data point, U =

[uij]n×k such that uij = 1 if xi belongs to cluster j; uij = 0 otherwise, and I{exp} =

1 if exp is true; 0 otherwise. The parameter α controls the amount of overlap,

and β controls the degree of non-exhaustiveness. The parameters imply that the

total number of assignments in U is equal to (1 + α)n and at least (1 − β)n data

points should belong to some clusters (i.e., there can be at most βn outliers). Thus,

(1 + α)n should be greater than or equal to (1− β)n. This leads to α+ β ≥ 0.

5.2 The NEO-Co-Clustering Objective

We now discuss how we can design a reasonable objective function for the

non-exhaustive, overlapping co-clustering problem where the clusters are allowed to

overlap with each other, and outliers are not allowed to be assigned to any cluster.

Formally, ∃i 6= j such that Ci ∩ Cj 6= ∅, C1 ∪ · · · ∪ Ck ⊆ X r, and C1 ∪ · · · ∪ Cl ⊆ X c.

Given an element xij in X, let f(xi) denote the set of row clusters that

xi belongs to (i = 1, . . . , n), and let g(xj) denote the set of column clusters that

xj belongs to (j = 1, . . . ,m). Then, similar to the MSSR co-clustering objective

function, we consider the difference between xij and the mean of its co-clusters as

83

follows: ∑
Cq∈g(xj)

∑
Cp∈f(xi)

(
xij −

∑
xt∈Cq

∑
xs∈Cp

xst
|Cq||Cp|

)2
(5.3)

for xij such that f(xi) 6= ∅ and g(xj) 6= ∅. Note that since each data point can belong

to multiple row and column clusters, we need to consider all the combinations of

these row and column clusters when we compute the mean of the co-clusters.

Now, let us represent the idea of (5.3) using vectors and matrices. Given a

vector y ∈ Rm, let us define D(y) = [dij]m×m as the diagonal matrix with dii = yi

(i = 1, . . . ,m). Then, our NEO-Co-Clustering Objective is defined as follows:

minimize
U ,V

k∑
i=1

l∑
j=1
‖D(ui)XD(vj)− ûiû

T
i Xv̂jv̂

T
j ‖2F

subject to trace(UTU) = (1 + αr)n,∑n
i=1 I{(U1)i = 0} ≤ βrn,

trace(V TV) = (1 + αc)m,∑m
i=1 I{(V 1)i = 0} ≤ βcm,

(5.4)

where αr and βr are the parameters for row clustering, and αc and βc are the

parameters for column clustering.

To explain the implication of (5.4), we show an illustrative example in Fig-

ure 5.1. Let us consider a small data matrix X ∈ R4×5 and the assignment matrices

U and V as shown in Figure 5.1 (a). For an entry x21, Figure 5.1 (b) shows the

contribution of the entry x21 to the NEO-Co-Clustering objective in (5.4) when

xr2 ∈ Cr1 , xr2 ∈ Cr2 (xr2 ∈ R5), xc1 ∈ Cc1, xc1 ∈ Cc2 (xc1 ∈ R4).

The NEO-Co-Clustering objective function seamlessly generalizes the NEO-

K-Means objective function and the MSSR objective function. If V = I, αc = 0,

βc = 0, then (5.4) is equivalent to the NEO-K-Means objective (5.2). If αr = 0,

αc = 0, βr = 0, βc = 0, then (5.4) is equivalent to the MSSR objective (5.1).

84

(a) Data matrix X, row clustering
U , and column clustering V

(b) The contribution of x21 to the NEO-Co-Clustering ob-
jective

Figure 5.1: Given a small data matrix X ∈ R4×5 and the assignment matrices for
row & column clusterings U & V , the contribution of an entry x21 to the NEO-Co-
Clustering objective in (5.4) is determined by f(xr2) and g(xc1). Note that xr2 ∈ Cr1 ,
xr2 ∈ Cr2 (xr2 ∈ R5), xc1 ∈ Cc1, xc1 ∈ Cc2 (xc1 ∈ R4).

Now we conduct a small case study on the following data matrix X:

X =



0.05 0.05 0.05 0 0 0

0.05 0.05 0.05 0 0 0

0.04 0.04 0.04 0 0.04 0.04

0.04 0.04 0 0.04 0.04 0.04

0 0 0 0.05 0.05 0.05

0 0 0 0.05 0.05 0.05

0 0 0.3 0 0 0


(5.5)

On X, we consider four different co-clustering results and investigate how

the NEO-Co-Clustering objective function values are changed. Figure 5.2 shows

the NEO-Co-Clustering objective values for the four different configurations. In

Figure 5.2 (a) & (b), we consider exhaustive, disjoint clusterings with different k.

Notice that on these configurations, nnz(U) + nnz(V) = 13. We observe that

85

U =



1 0
1 0
1 0
0 1
0 1
0 1
1 0


V =


1 0
1 0
1 0
0 1
0 1
0 1


(a) Objective value: 0.0720

U =



1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
1 0 0


V =


1 0
1 0
1 0
0 1
0 1
0 1


(b) Objective value: 0.0677

U =



1 0
1 0
1 1
1 1
0 1
0 1
0 0


V =


1 0
1 0
1 0
0 1
0 1
0 1


(c) Objective value: 0.0137

U =



1 0
1 0
1 1
1 1
0 1
0 1
0 0


V =


1 0
1 0
0 0
0 1
0 1
0 1


(d) Objective value: 0.0102

Figure 5.2: NEO-Co-Clustering objective values defined in (5.4) for four different
co-clustering results

(b) yields a slightly small objective value than (a). In Figure 5.2 (c), xr3 and xr4

belong to both of the row clusters, and xr7 does not belong to any cluster. We see

that (c) achieves a much smaller objective function value than (a) & (b). Indeed,

when we look at the data matrix X, we can realize that (c) is a more desirable

co-clustering result than (a) & (b). On the other hand, the NEO-Co-Clustering

objective value is proportional to the number of assignments in U and U . In (c),

we notice that nnz(U) + nnz(V) = 14 ([nαr] = 1, [nβr] = 1, αc = 0, βc = 0).

Thus, we also consider (d) where where nnz(U) + nnz(V) = 13. In this case,

the column clustering becomes a disjoint and non-exhaustive clustering by setting

[nαr] = 1, [nβr] = 1, [mαc] = −1, [mβc] = 1. Notice that xc3 is considered to

be an outlier, so it does not belong to any cluster. We can see that (d) achieves

the smallest objective value and also (d) might be the optimal co-clustering for X.

On this simple case study, we observe that a smaller NEO-Co-Clustering objective

function value leads to a more desirable co-clustering result. This indicates that

by optimizing our NEO-Co-Clustering objective, we might be able to capture the

natural co-clustering structures from the underlying data.

86

5.3 The NEO-Co-Clustering Algorithm

To optimize the NEO-Co-Clustering objective function defined in (5.4), we

develop a simple iterative algorithm which we call the NEO-Co-Clustering (NEO-

CC) algorithm. Algorithm 7 shows the NEO-CC algorithm. The algorithm consists

of two main parts – updating row clustering (lines 4–20) and updating column

clustering (lines 22–38).

Let us first describe how U is updated. To update U , we need to compute

distances between every data point in X r and the clusters Crq for q = 1, · · · , k (lines

4–8). Let [dpq]n×k denote these distances. The distance between a data point xp

and a cluster Crq is computed by

dpq =
l∑

j=1

∥∥∥∥∥(Ip·)XD(vj)−
1√
‖uq‖1

ûTqXv̂jv̂
T
j

∥∥∥∥∥
2

where Ip· denotes the p-th row of the identity matrix of size n.

For each data point xp ∈ X r (p = 1, · · · , n), we record the closest cluster and

that distance. Then, the data points are sorted in ascending order by the distance

to its closest cluster. To satisfy the non-exhaustiveness constraint, we assign the

first (1− βr)n data points to their closest clusters. Then, we make αrn+ βrn more

assignments by taking αrn + βrn minimum distances among [dpq]n×k. In this way,

row clustering is updated. Similarly, we can also update column clustering. The

row and column clusterings are repeatedly updated until the change in the objective

function value is sufficiently small or the maximum number of iterations is reached.

The NEO-CC algorithm also has close connections to the NEO-K-Means

algorithm and the MSSR algorithm. If V = I, αc = 0, βc = 0, then Algorithm 7 is

identical to the NEO-K-Means algorithm. If αr = 0, αc = 0, βr = 0, βc = 0, then

Algorithm 7 is identical to the MSSR algorithm.

87

Algorithm 7 NEO-Co-Clustering Algorithm

Input: X ∈ Rn×m, k, l, αr, αc, βr, βc, tmax

Output: Row clustering U ∈ {0, 1}n×k, Column clustering V ∈ {0, 1}m×l

1: Initialize U , V , and t = 0.
2: while not converged and t < tmax do
3: /* Update Row Clustering */
4: for each xp ∈ X r do
5: for q = 1, · · · , k do

6: dpq =
∑l

j=1

∥∥∥∥∥(Ip·)XD(vj)−
1√
‖uq‖1

ûT
qXv̂jv̂

T
j

∥∥∥∥∥
2

7: end for
8: end for
9: Initialize w = 0, T = ∅, S = ∅, and C̄ri = ∅, Ĉri = ∅ ∀i (i = 1, · · · , k).

10: while w < (n+ αrn) do
11: if w < (n− βrn) then
12: Assign xr

i∗ to C̄rj∗ such that (i∗, j∗) = argmin
i,j

dij where , {(i, j)} /∈ T , i /∈ S.
13: S = S ∪ {i∗}.
14: else
15: Assign xr

i∗ to Ĉrj∗ such that (i∗, j∗) = argmin
i,j

dij where {(i, j)} /∈ T .
16: end if
17: T = {(i∗, j∗)} ∪ T .
18: w = w + 1.
19: end while
20: Update clusters Cri = C̄ri ∪ Ĉri ∀i (i = 1, · · · , k).
21: /* Update Column Clustering */
22: for each xp ∈ X c do
23: for q = 1, · · · , l do

24: dpq =
∑k

i=1

∥∥∥∥∥D(ui)X(I·p)− 1√
‖vq‖1

ûiû
T
i Xv̂q

∥∥∥∥∥
2

25: end for
26: end for
27: Initialize w = 0, T = ∅, S = ∅, and C̄cj = ∅, Ĉcj = ∅ ∀j (j = 1, · · · , l).
28: while w < (m+ αcm) do
29: if w < (m− βcm) then
30: Assign xc

i∗ to C̄cj∗ such that (i∗, j∗) = argmin
i,j

dij where {(i, j)} /∈ T , i /∈ S.
31: S = S ∪ {i∗}.
32: else
33: Assign xc

i∗ to Ĉcj∗ such that (i∗, j∗) = argmin
i,j

dij where {(i, j)} /∈ T .
34: end if
35: T = {(i∗, j∗)} ∪ T .
36: w = w + 1.
37: end while
38: Update clusters Ccj = C̄cj ∪ Ĉcj ∀j (j = 1, · · · , l).
39: t = t+ 1.
40: end while

88

5.3.1 Convergence Analysis

We can show that Algorithm 7 monotonically decreases the NEO-Co-Clustering

objective function. To show the convergence, we need the following lemma.

Lemma 1. Let us consider the following function

h(z) =
∑
i

πi ‖ai − czM‖22

where ai ∈ R1×m, z ∈ R1×m, πi > 0 ∀i, c =
1√∑
i πi

, and M ∈ Rm×m such that

MMT = M . Let z∗ denote the minimizer of h(z). Then, z∗ is given by

(√∑
i

πi

)
Mz∗T = M

(∑
i

πia
T
i

)
.

Proof. We can express h(z) as follows:

h(z) =
∑
i

πi
(
aia

T
i − 2czMaTi + c2zMMT zT

)
,

and the gradient is given by

∂h(z)

∂z
=
∑
i

πi
(
− 2cMaTi + 2c2MMT zT

)
.

By setting the gradient to zero, we get

∑
i

πiMaTi = c
(∑

i

πi

)
MMT z∗T

= c
(∑

i

πi

)
Mz∗T since MMT = M

89

By setting c =
1√∑
i πi

, we get

(√∑
i

πi

)
Mz∗T = M

(∑
i

πia
T
i

)
.

Now, Theorem 4 shows the convergence of Algorithm 7.

Theorem 4. Algorithm 7 monotonically decreases the NEO-Co-Clustering objective

(5.4).

Proof. Let J (t) denote the NEO-Co-Clustering objective (5.4) at t-th iteration. Let

U denote the assignment matrix of the current row clustering C, and U∗ denote

assignment matrix of the updated row clustering C∗ obtained by line 20 in Algo-

rithm 7.

J (t) =
k∑
i=1

l∑
j=1

∥∥D(ui)XD(vj)− ûiû
T
i Xv̂jv̂

T
j

∥∥2
F

=
k∑
i=1

l∑
j=1

∑
xp∈Ci

∥∥∥∥∥(Ip·)XD(vj)−
1√
‖ui‖1

ûTi Xv̂jv̂
T
j

∥∥∥∥∥
2

2

≥
k∑
i=1

l∑
j=1

∑
xp∈C∗i

∥∥∥∥∥(Ip·)XD(vj)−
1√
‖ui‖1

ûTi Xv̂jv̂
T
j

∥∥∥∥∥
2

2

≥
k∑
i=1

l∑
j=1

∑
xp∈C∗i

∥∥∥∥∥(Ip·)XD(vj)−
1√
‖u∗i‖1

û∗
T
i Xv̂jv̂

T
j

∥∥∥∥∥
2

2

=

k∑
i=1

l∑
j=1

∥∥∥D(u∗i)XD(vj)− û∗iû∗
T
i Xv̂jv̂

T
j

∥∥∥2
F

≥
k∑
i=1

l∑
j=1

∥∥∥D(u∗i)XD(v∗j)− û∗iû∗
T
i Xv̂∗jv̂∗

T
j

∥∥∥2
F

= J (t+1)

90

U =



0 0
1 0
1 1
1 1
0 1
0 0
1 1


V =


1 0
0 0
1 0
1 1
0 1
0 0

⇒

(a) Initial U , V (obj: 0.159242)

U =



1 1
1 0
1 1
0 1
0 1
0 1
0 0


⇒

(b) obj: 0.018142

V =


1 0
1 0
0 0
0 1
0 1
0 1

⇒

(c) obj: 0.013596

U =



1 0
1 0
1 1
1 1
0 1
0 1
0 0


⇒

(d) obj: 0.010233

V =


1 0
1 0
0 0
0 1
0 1
0 1

⇒

(e) obj: 0.010233

U =



1 0
1 0
1 1
1 1
0 1
0 1
0 0


V =


1 0
1 0
0 0
0 1
0 1
0 1


(f) Final U , V (obj: 0.010233)

Figure 5.3: The progress of the NEO-Co-Clustering algorithm on the small X pre-
sented in (5.5) of Chapter 5.2.

The first inequality holds because we make assignments by line 12 & line 15, and

the second inequality holds by Lemma 1 with aTi = (Ip·)XD(vj), M = v̂jv̂
T
j ,

z∗ = û∗
T
i X, and

√∑
i πi =

√
‖u∗i‖1. The last inequality indicates that we can

similarly show the decrease from V to V ∗.

5.3.2 Illustrative Example

We now provide an illustrative example to show how Algorithm 7 proceeds

on the small X presented in (5.5) of Chapter 5.2. In Figure 5.3, the assignment

matrices U and V are initialized with arbitrary matrices as shown in Figure 5.3(a).

In Figure 5.3(b)–(e), U and V are updated alternatively, and during this process, the

NEO-Co-Clustering objective function monotonically decreases. The final output of

the NEO-CC algorithm is shown in Figure 5.3(f). Notice that the final assignment

matrices produced by the NEO-CC algorithm are the optimal assignment matrices

for X as we described in Chapter 5.2.

91

5.4 Related Work

There are various approaches to solve the co-clustering problem. Among

these, we focus on the MSSR [28] formulations because the MSSR objective function

has a close relationship with the standard k-means objective, which enables us to

find a seamless extension of our NEO-K-Means objective.

Information-theoretic co-clustering [33] is one of the most well-known co-

clustering algorithms. In the information-theoretic approach, a contingency table

is viewed as a joint probability distribution between two discrete random variables,

and the co-clustering problem is formed as an optimization problem of maximizing

the mutual information between the clustered random variables. Also, [10] pro-

vides a more general and flexible co-clustering framework where the MSSR [28] and

the information-theoretic co-clustering [33] can be viewed as special cases of the

framework.

In [31], a Robust Overlapping Co-Clustering (ROCC) has been proposed

which is able to find arbitrarily positioned, overlapping co-clusters from noisy datasets.

The ROCC algorithm is also intended to find non-exhaustive, overlapping co-clustering.

However, the ROCC algorithm includes complicated heuristics while our NEO-CC

algorithm is a more principled method. We also notice that [9] proposes an overlap-

ping co-clustering algorithm.

Co-clustering has also been studied in the field of bioinformatics or compu-

tational biology since it has been known that a co-clustering technique is useful for

finding meaningful structures in gene expression data [70], [27].

5.5 Experimental Results

We show some experimental results on real-world datasets. The first dataset

is the YEAST dataset from [35]. This dataset contains micro-array expression data

92

0 5 10 15 20 25 30
1.25

1.255

1.26

1.265

1.27

1.275

1.28
x 10

4

Iterations

O
bj

ec
tiv

e
va

lu
e

(a) The NEO-Co-Clustering objective value
vs. Iterations

0 1 2 3 4 5 6 7 8 9 10

1.26

1.27

1.28

1.29

1.3

1.31

1.32

1.33

x 10
4

Iterations

O
bj

ec
tiv

e
va

lu
e

(b) The NEO-Co-Clustering objective values
during the first 10 iterations showing both
row and column clustering updates

Figure 5.4: The NEO-CC algorithm monotonically decreases the NEO-Co-
Clustering objective values.

for genes. Each gene belongs to multiple functional classes, and we treat each

functional class as a ground-truth cluster. There are 2,417 genes, 103 features, and

14 functional classes.

In Figure 5.4, we show the change of the NEO-Co-Clustering objective func-

tion values as the NEO-CC algorithm progresses. In the plots, the x-axis represents

the number of iterations, and the y-axis is the objective function value. We see that

the NEO-CC algorithm monotonically decreases the NEO-Co-Clustering objective

function values. Figure 5.4(a) shows the change of the objective values until the

NEO-CC algorithm terminates on the YEAST dataset while Figure 5.4(b) shows

the first 10 iterations. In Figure 5.4(b), we show the objective value after the update

of row clustering and the update of column clustering. We see that both row and

column clustering updates lead to a decrease in the objective value.

Now, we compare the clustering performance by comparing the algorithmic

clusters and the ground-truth clusters. We compare with three different methods:

MSSR algorithm [28], the iterative NEO-K-Means algorithm presented in Chapter 3

(denoted by NEO-iter), the low-rank SDP NEO-K-Means presented in Chapter 4

93

Table 5.1: F1 scores on YEAST dataset.

MSSR NEO-iter NEO-lrsdp NEO-CC

Trial 1 0.171 0.359 0.390 0.406
Trial 2 0.170 0.366 0.391 0.406
Trial 3 0.165 0.360 0.390 0.406
Trial 4 0.164 0.360 0.391 0.362
Trial 5 0.174 0.356 0.391 0.407

Table 5.2: MovieLens datasets

No. of users No. of movies Genres

ML1 718 2,902 Action & Romance
ML2 718 1,913 Mystery & Thriller
ML3 718 1,569 Adventure & Sci-Fi

(denoted by NEO-lrsdp). In our NEO-CC algorithm, we initialize U using the

iterative NEO-K-Means, and initialize V by running the iterative NEO-K-Means

on the transpose of the original data matrix. The parameters α and β (and αr, βr,

αc, and βc) are estimated using the strategies presented in Chapter 3.

We repeated the experiments for 5 times, and Table 5.1 shows the F1 scores

on YEAST dataset. When we compare the F1 scores of NEO-iter and NEO-CC, we

see that NEO-CC noticeably improves clustering performance. It is interesting to

see that the performance of NEO-CC is even slightly better than NEO-lrsdp. Note

that NEO-lrsdp involves much more expensive operations than NEO-CC which is a

simple iterative algorithm. We also note that the performance of MSSR algorithm

is not good. This is because the dataset contains a large overlap among the clusters

while the MSSR algorithm only produces disjoint clusters.

The second dataset is a set of user-movie ratings in MovieLens from [2]. In

this dataset, the data matrix is represented by users by movies, and non-zero entries

represent ratings. In this dataset, the movie genres are treated as the ground-truth

clusters. Table 5.2 shows the three different datasets we use. In Table 5.3, we show

the best, the worst, and the average F1 scores for 5 runs. We see that the NEO-CC

94

Table 5.3: F1 scores on MovieLens datasets.

MSSR NEO-iter NEO-lrsdp NEO-CC

ML1 best 0.438 0.563 0.564 0.581
worst 0.438 0.563 0.564 0.581
avg. 0.438 0.563 0.564 0.581

ML2 best 0.506 0.568 0.568 0.588
worst 0.502 0.568 0.568 0.581
avg. 0.505 0.568 0.568 0.584

ML3 best 0.474 0.591 0.593 0.598
worst 0.471 0.570 0.568 0.584
avg. 0.473 0.574 0.573 0.588

algorithm shows the highest F1 scores.

5.6 Future Work

We plan to extend our NEO-Co-Clustering objective and the NEO-CC algo-

rithm to clustering with other Bregman divergences [12] so that we can extend our

methods to Bregman co-clustering [10]. Also, we intend to investigate a low-rank

semidefinite programming for the NEO-Co-Clustering problem.

95

Chapter 6

Design of Parallel Data-driven

Algorithms: Case Study with

Scalable Data-driven PageRank

We study the design of parallel data-driven algorithms, which enables us to

further increase the scalability of our overlapping community detection algorithms.

Large-scale graph analysis has received considerable attention in both the machine

learning and parallel programming communities. In machine learning, many dif-

ferent types of task-specific algorithms have been developed to deal with massive

networks. In parallel computing, many different parallel programming models and

systems have been proposed for both shared memory and distributed memory set-

tings to ease implementation and manage parallel programs.

Recent research has observed that distributed graph analytics can have a

significant slowdown over shared-memory implementations, that is, the increase in

communication costs are not easily made up for by increase in aggregate processing

The materials presented in this chapter have been published in [81]. Joyce designed and im-
plemented the algorithms, and also conducted experiments. Andrew implemented the algorithms.
Professor Dhillon and Professor Pingali supervised the work.

96

power or memory bandwidth. Furthermore, a remarkable number of “large” graphs

fit in the main memory of a shared memory machine; it is easy to fit graphs with tens

of billions of edges on a large workstation-class machine. Given these factors, it is

worth understanding how to efficiently parallelize graph analytics on shared-memory

machines. A better understanding of how to implement fast shared-memory ana-

lytics both greatly reduces the costs and enables richer applications on commodity

systems. Better implementation strategies also help distributed implementations,

as they tend to use shared-memory abstractions within a host.

Many graph mining techniques usually involve iterative algorithms where lo-

cal computations are repeatedly done at a set of nodes until a convergence criterion

is satisfied. Let us define active nodes to be a set of nodes where computations

should be performed. Based on how the active nodes are processed, we can broadly

classify these iterative graph algorithms from three different points of view: work

activation, data access pattern, and scheduling. In this work [81], we present general

approaches for designing scalable data-driven graph algorithms using a case study

of the PageRank algorithm. In particular, using the three different algorithm design

axes (i.e., work activation, data access pattern, and scheduling), we present eight

different formulations and in-memory parallel implementations of PageRank algo-

rithm. We show that by considering data-driven formulations, we can have more

flexibility in processing the active nodes, which enables us to develop work-efficient

algorithms. We focus our analysis on PageRank in this chapter, but our approaches

and formulations can be easily extended to other graph mining algorithms.

6.1 Work Activation

We first classify algorithms into two groups based on work activation: topology-

driven and data-driven algorithms. In a topology-driven algorithm, active nodes are

defined solely by the structure of a graph. For example, an algorithm which re-

97

quires processing all the nodes at each iteration is referred to as a topology-driven

algorithm. On the other hand, in a data-driven algorithm, the nodes are dynam-

ically activated by their neighbors, i.e., the nodes become active or inactive in an

unpredictable way. In many applications, data-driven algorithms can be more work-

efficient than topology-driven algorithms because the former allow us to concentrate

more on “hot spots” in a graph where more frequent updates are needed.

6.1.1 Topology-driven PageRank

To explain the concepts in more detail, we now focus our discussion on PageR-

ank which is a key technique in web mining [20]. Given a graph G = (V, E) with a

vertex set V and an edge set E , let x denote a PageRank vector of size |V|. Also,

let us define Sv to be the set of incoming neighbors of node v, and Tv to be the

set of outgoing neighbors of node v. Then, node v’s PageRank, denoted by xv, is

iteratively computed by

x(k+1)
v = α

∑
w∈Sv

x
(k)
w

|Tw|
+ (1− α)

where x
(k)
v denotes the k-th iterate, and α is a teleportation parameter (0 < α < 1).

Algorithm 6.1 presents this iteration, which is the traditional Power method that

can be used to compute PageRank. Given a user defined tolerance ε, the PageRank

vector x is initialized to be x = (1 − α)e where e denotes the vector of all 1’s.

The PageRank values are repeatedly computed until the difference between x
(k)
v

and x
(k+1)
v is smaller than ε for all the nodes. Since the Power method requires

processing all the nodes at each round, it is a topology-driven algorithm.

98

Algorithm 6.1: Topology-driven PageRank
Input: graph G = (V, E), α, ε
Output: PageRank x
1: Initialize x = (1− α)e
2: while true do
3: for v ∈ V do

4: x
(k+1)
v = α

∑
w∈Sv

x
(k)
w

|Tw|
+ (1− α)

5: δv = |x(k+1)
v − x(k)

v |
6: end for
7: if ‖δ‖∞ < ε then
8: break;
9: end if

10: end while
11: x =

x

‖x‖1

Algorithm 6.2: Data-driven PageRank
Input: graph G = (V, E), α, ε
Output: PageRank x
1: Initialize x = (1− α)e
2: for v ∈ V do
3: worklist.push(v)
4: end for
5: while !worklist.isEmpty do
6: v = worklist.pop()

7: xnew
v = α

∑
w∈Sv

xw

|Tw|
+ (1− α)

8: if |xnew
v − xv | ≥ ε then

9: xv = xnew
v

10: for w ∈ Tv do
11: if w is not in worklist then
12: worklist.push(w)
13: end if
14: end for
15: end if
16: end while
17: x =

x

‖x‖1

6.1.2 Basic Data-driven PageRank

Instead of processing all the nodes in rounds, we can think of an algorithm

which dynamically maintains a working set. Algorithm 6.2 shows a basic data-driven

PageRank. Initially, the worklist is set to be the entire vertex set. The algorithm

proceeds by picking a node from the worklist, computing the node’s PageRank, and

adding its outgoing neighbors to the worklist.

To examine convergence of the data-driven PageRank, let us rewrite the

problem in the form of a linear system. We define a row-stochastic matrix P to be

P ≡ D−1A where A is an adjacency matrix and D is the degree diagonal matrix.

We assume that there is no self-loop in the graph, i.e., the diagonal elements of A

are all zeros. Then, the PageRank computation can be written as follows:

x = αP Tx + (1− α)e.

99

This is the linear system of

(I − αP T)x = (1− α)e,

and the residual is defined to be

r = (1− α)e− (I − αP T)x = αP Tx + (1− α)e− x.

In this setting, it has been shown in [60] that each local computation in Algorithm

6.2 decreases the residual. Indeed, when a node v’s PageRank is updated, its residual

rv becomes zero, and it can be shown that αrv/|Tv| is added to each of its outgoing

neighbors’ residuals. Theorem 5 formally describes this.

Theorem 5. In Algorithm 6.2, when x
(k)
v is updated to x

(k+1)
v , the total residual is

decreased at least by rv(1− α). More specifically,

eT r(k+1) =

 eT r(k) − r(k)v (1− α) : Tv 6= ∅

eT r(k) − r(k)v : Tv = ∅

Proof. Let x
(k)
v denote the k-th update of xv. In Algorithm 6.2, we initialize x to

be x(0) = (1− α)e. Thus, the initial residual r(0) can be written as follows:

r(0) = (1− α)e− (I − αP T)(1− α)e = (1− α)αP Te ≥ 0. (6.1)

We can see that the initial residual is positive. In Algorithm 6.2, for each

active node v, we update its PageRank as follows:

x(k+1)
v = (1− α) + α

∑
w∈Sv

x
(k)
w

|Tw|
.

100

Indeed, this is equivalent to:

x(k+1)
v = x(k)v + r(k)v . (6.2)

because:

x(k+1)
v = x(k)v + r(k)v = x(k)v + (1− α)− x(k)v + α[P Tx(k)]v︸ ︷︷ ︸

r
(k)
v

.

Also, after such an update, we can show that r(k+1) ≥ 0. Let γ = r
(k)
v . Then,

x(k+1) = x(k) + γev

r(k+1) = (1− α)e− (I − αP T)x(k+1)

r(k+1) = (1− α)e− (I − αP T)(x(k) + γev)

r(k+1) = r(k) − γ(I − αP T)ev (6.3)

Note that the v-th component of r(k+1) goes to zero, and we only add positive

values to the other components. Recall that the initial residual is positive shown in

(6.1). Thus, by induction, we can see that r(k+1) ≥ 0.

Now, by multiplying eT in (6.3), we get:

eT r(k+1) =

 eT r(k) − r(k)v (1− α) : Tv 6= ∅

eT r(k) − r(k)v : Tv = ∅

Thus, any step decreases the residual by at least γ(1 − α), and moves x closer to

the solution.

Followed from this, we can also show Theorem 6.

Theorem 6. Algorithm 6.2 guarantees ‖r‖∞ < ε when it is converged.

101

Proof. Whenever a node’s PageRank is updated, the residual of each of its outgoing

neighbors is increased. Thus, if we ever change a node’s PageRank, we need to

add its outgoing neighbors to the worklist to verify that their residual is sufficiently

small. This is what Algorithm 6.2 does.

Thus, we showed that Algorithm 6.2 converges, and on termination, it is

guaranteed that the residual ‖r‖∞ < ε. From the next chapter, we will focus on the

data-driven formulation of PageRank, and build up various variations.

6.2 Data Access Pattern

Data access pattern (or memory access pattern) is an important factor in

designing a scalable graph algorithm. When an active node is processed, there

can be a particular data access pattern. For example, some algorithms require

reading a value of an active node and updating its outgoing neighbors, whereas

some algorithms require reading values from incoming neighbors of an active node

and updating the active node’s value. Based on these data access patterns, we

can classify algorithms into three categories: pull-based, pull-push-based, and push-

based algorithms.

6.2.1 Pull-based PageRank

In pull-based algorithms, an active node pulls (reads) its neighbors’ values

and updates its own value. Note that pull-based algorithms require more read

operations than write operations in general because the write operation is only

performed on the active node. In the PageRank example, Algorithms 6.1 and 6.2

are both pull-based algorithms because an active node pulls (reads) its incoming

neighbors’ PageRank values and updates its own PageRank.

102

6.2.2 Pull-Push-based PageRank

In pull-push-based algorithms, an active node pulls (reads) its neighbors’ val-

ues and also pushes (updates) its neighbors’ values. When we consider the cost for

processing an active node, pull-push-based algorithms might be more expensive than

pull-based algorithms as they require both read and write operations on neighbors.

However, in terms of information propagation, pull-push-based algorithms can have

advantages because in pull-push-based algorithms, an active node can propagate in-

formation to its neighbors whereas in pull-based algorithms, an active node passively

receives information from its neighbors.

Now, we transform the basic data-driven PageRank into a pull-push-based

algorithm. In Algorithm 6.2, whenever a node’s PageRank is updated, the residuals

of its outgoing neighbors are increased. Thus, to guarantee that the maximum

residual is smaller than ε, all the outgoing neighbors of an active node should be

added to the worklist. However, if we explicitly compute and maintain the residuals,

we do not need to add all the outgoing neighbors of an active node, instead, we only

need to add the outgoing neighbors whose residuals become greater than or equal

to ε. In this way, we can filter out some work in the worklist. In Algorithm 6.3,

the initial residual r(0) is computed by r(0) = (1− α)αP Te (lines 3–8). Each active

node pulls its incoming neighbors’ PageRank values (line 14), and pushes residuals

to its outgoing neighbors (line 17). Then, an outgoing neighbor w of the active node

v is added to the worklist only if the updated residual rw is greater than or equal

to ε and its old residual is less than ε. The second condition allows us to avoid

having duplicates in the worklist (i.e., we add a node to the worklist only when

its residual crosses ε). In this algorithm, there is a trade-off between overhead for

residual computations and filtering out work in the worklist. We empirically observe

that in many cases, the benefit of filtering overcomes the overhead for residual

computations.

103

Algorithm 6.3: Pull-Push-based PageRank
Input: graph G = (V, E), α, ε
Output: PageRank x
1: Initialize x = (1− α)e
2: Initialize r = 0
3: for v ∈ V do
4: for w ∈ Sv do

5: rv = rv +
1

|Tw|
6: end for
7: rv = (1− α)αrv
8: end for
9: for v ∈ V do

10: worklist.push(v)
11: end for
12: while !worklist.isEmpty do
13: v = worklist.pop()

14: xv = α
∑

w∈Sv

xw

|Tw|
+ (1− α)

15: for w ∈ Tv do
16: roldw = rw

17: rw = rw +
rvα

|Tv |
18: if rw ≥ ε and roldw < ε then
19: worklist.push(w)
20: end if
21: end for
22: rv = 0
23: end while
24: x =

x

‖x‖1

Algorithm 6.4: Push-based PageRank
Input: graph G = (V, E), α, ε
Output: PageRank x
1: Initialize x = (1− α)e
2: Initialize r = 0
3: for v ∈ V do
4: for w ∈ Sv do

5: rv = rv +
1

|Tw|
6: end for
7: rv = (1− α)αrv
8: end for
9: for v ∈ V do

10: worklist.push(v)
11: end for
12: while !worklist.isEmpty do
13: v = worklist.pop()

14: xnew
v = xv + rv

15: for w ∈ Tv do
16: roldw = rw

17: rw = rw +
rvα

|Tv |
18: if rw ≥ ε and roldw < ε then
19: worklist.push(w)
20: end if
21: end for
22: rv = 0
23: end while
24: x =

x

‖x‖1

6.2.3 Push-based PageRank

In push-based algorithms, an active node updates its own value, and only

pushes (updates) its neighbors’ values. Compared to pull-based algorithms, push-

based algorithms can be more costly in the sense that they require more write oper-

ations. However, push-based algorithms invoke more frequent updates, which might

be helpful to achieve a faster information propagation over the network. Compared

to pull-push-based algorithms, push-based algorithms can be more efficient because

they only require write operations instead of read & write operations. To design

a push-based PageRank, we need to notice that the (k+1)-st PageRank update of

node v is equivalent to the sum of the k-th PageRank of v and its k-th residual.

This can be derived from the linear system formulation discussed in Chapter 6.1.2.

Thus, we can formulate a push-based PageRank as follows: for each active node

104

v, its PageRank is updated by x
(k+1)
v = x

(k)
v + r

(k)
v . Algorithm 6.4 shows the full

procedure. Note that the only difference between Algorithm 6.3 and Algorithm 6.4

is line 14. In Algorithm 6.4, an active node updates its own PageRank and the

residuals of its outgoing neighbors.

6.3 Scheduling

Task scheduling, the order in which tasks are executed, can be very impor-

tant to graph algorithms [63]. For example, in data-driven PageRank, we see that

whenever a node v has residual rv, and its PageRank is then updated, the total

residual is decreased “at least” or “exactly” by rv(1− α). This suggests that if we

process “large residual” nodes first, the algorithm might converge faster. Thus, we

can define a node v’s priority pv to be the residual per unit work, i.e., pv = rv/dv

where dv = |Sv|+ |Tv| for the pull-push-based PageRank, and dv = |Tv| in the push-

based algorithm. Realizing the potential benefits in convergence requires priority

scheduling. In priority scheduling, each task is assigned a value, the priority, and

scheduled in increasing (or decreasing) order. More sophisticated schedulers allow

modifying the priority of existing tasks, but this is an expensive operation not com-

monly supported in parallel systems. Practical priority schedulers have to trade off

several factors: efficiency, communication (and thus scaling), priority fidelity, and

set-semantics (here, the “set-semantics” means that there are no duplicate work

items in the worklist). In general, both priority fidelity and set-semantics require

significant global knowledge and communication, thus are not scalable. To investi-

gate the sensitivity of PageRank to different design choices in a priority scheduler,

we use two different designs: one which favors priority fidelity but gives up set-

semantics and one which preserves set-semantics at the expense of priority fidelity.

We compare these with scalable non-priority schedulers to see if the improved con-

vergence outweighs the increased cost of priority scheduling.

105

The first scheduler we use is the scalable, NUMA-aware OBIM (ordered-by-

integer-metric) priority scheduler [52]. This scheduler uses an approximate consen-

sus protocol to inform a per-thread choice to search for stealable high-priority work

or to operate on local near-high-priority work. Various underlying data structures

and stealing patterns are aware of the machine’s memory topology and optimized to

maximize information propagation while minimizing cache coherence cost. OBIM

favors keeping all threads operating on high priority work and does not support

either set-semantics or updating the priority of existing tasks. To handle this, tasks

are created for PageRank every time a node’s priority changes, potentially gener-

ating duplicate tasks in the scheduler. Tasks with outdated priorities are quickly

filtered out at execution time (a process which consumes only a few instructions).

The second scheduler we use is a bulk-synchronous priority scheduler. This

scheduler operates in rounds. Each round, all items with priority above a threshold

are executed. Generated tasks and unexecuted items are placed in the next round.

The range and mean are computed for the tasks, allowing the threshold to be cho-

sen for each round based on the distribution of priorities observed for that round.

This organization makes priority updates simple; priorities are recomputed every

round. Further, set-semantics may be trivially maintained. However, to minimize

the overhead of bulk-synchronous execution, each round must have sufficient work

to amortize the barrier synchronization. This produces a schedule of tasks which

may deviate noticeably from the user requested order.

We also consider FIFO- and LIFO-like schedules (parallel schedulers cannot

both scale and preserve exact FIFO and LIFO order). It is obvious that a LIFO

scheduler is generally bad for PageRank. Processing nodes after a single neighbor

is visited will process the node once for each in-neighbor. FIFO schedulers provide

time for a node to accumulate pending changes from many neighbors before be-

ing processed. We use a NUMA-aware scheduler, similar to that from Galois and

106

QThreads, to do scalable, fast FIFO-like scheduling.

6.4 Related Work

Our approaches of considering three different algorithm design axes are mainly

motivated by the Tao analysis [69] where the concepts of topology-driven and data-

driven algorithms have been studied in the context of amorphous data-parallelism.

While Tao analysis has been proposed for a general parallel programming framework,

our analysis is geared more towards designing new scalable data mining algorithms.

For scalable parallel computing, many different types of parallel program-

ming models have been proposed, e.g., Galois [62], Ligra [74], GraphLab [56], Priter

[87], and Maiter [88]. Since PageRank is a popular benchmark for parallel pro-

gramming models, various versions of PageRank have been implemented in different

parallel platforms in a rather ad hoc manner. Also, in data mining communities,

PageRank has been extensively studied, and many different approximate algorithms

(e.g., [7], [45]) have been developed over the years [16]. The Gauss–Seidel style up-

date of PageRank is studied in [60], and parallel distributed PageRank also has

been developed [38]. Our PageRank formulations can be considered as variations of

these previous studies. Our contribution in this work is to systematically analyze

and discuss various PageRank implementations with the perspective of designing

scalable graph mining methodologies.

Even though we have focused our discussion on PageRank in this chapter, our

approaches can be easily extended to other data mining algorithms. For example,

in semi-supervised learning, label propagation is a well-known method [15] which

involves fairly similar computations as PageRank. We expect that our data-driven

formulations can be applied to the label propagation method. Also, as we men-

tioned in Chapter 2, there is a close relationship between personalized PageRank

and community detection [7]. So, parallel data-driven community detection can be

107

Table 6.1: Summary of algorithm design choices
Algorithm Activation Access Schedule

dd-push Data-driven Push FIFOs w/ Stealing
dd-push-prs Data-driven Push Bulk-sync Priority
dd-push-prt Data-driven Push Async Priority
dd-pp-rsd Data-driven Pull-Push FIFOs w/ Stealing
dd-pp-prs Data-driven Pull-Push Bulk-sync Priority
dd-pp-prt Data-driven Pull-Push Async Priority
dd-basic Data-driven Pull FIFOs w/ Stealing
power-iter Topology Pull Load Balancer

another interesting application of our analysis.

6.5 Experimental Results

6.5.1 Experimental Setup

To see the performance and scaling sensitivity of PageRank to the design

considerations in this chapter, we implement a variety of PageRank algorithms with

different scheduling and data access patterns. All implementations are written using

the Galois System [62]. Table 6.1 summarizes the design choices for each imple-

mentation. Pseudo-code and more detailed discussions of each appear in previous

chapters. We also compare our results to a third-party baseline, namely GraphLab,

varying such parameters as are available in that implementation. For all experi-

ments, we use α = 0.85, ε = 0.01. We use a 4 socket Xeon E7-4860 running at

2.27GHz with 10 cores per socket and 128GB RAM. GraphLab was run in multi-

threaded mode.

6.5.2 Datasets

We use four real-world networks, given in Table 6.2. Twitter and Friendster

are social networks, and pld and sd1 are hyperlink graphs. These graphs range from

about 600 million edges to 3.6 billion edges. These range in size for in-memory

108

Table 6.2: Input Graphs
nodes # edges CSR size source

pld 39M 623M 2.7G webdatacommons.org/hyperlinkgraph/

sd1 83M 1,937M 7.9G webdatacommons.org/hyperlinkgraph/

Twitter 51M 3,228M 13G twitter.mpi-sws.org/

Friendster 67M 3,623M 14G archive.org/details/friendster-dataset-201107

compressed sparse row representations from 2.7GB to 14GB for the directed graph.

Most of the algorithms require tracking both in-edges and out-edges, making the

effective in-memory size approximately twice as large.

6.5.3 Results

Figure 6.1 shows run time, self-relative scalability, and speedup against the

best single-threaded algorithm. Specifically, for each input, we present:

• Run time: run time of each method as a function of threads

• Scalability:
run time of method m with a single thread

run time of method m with t threads

• Speedup:
run time of the fastest single-thread method

run time of method m with t threads
.

We note that GraphLab ran out of memory for all but the smallest (pld) in-

put. On pld, the serial GraphLab performance was approximately the same as the

closest Galois implementation, power-iter, but GraphLab scaled significantly worse.

Several broad patterns can be seen in the results. First, all data-driven implementa-

tions outperform topology implementation. The best data-driven PageRank imple-

mentation is 28x faster than GraphLab, and 10-20x faster than Galois power-iter,

depending on the thread count. Second, push-only implementations outperform

pull-push implementations which outperform a pure pull-based version. Finally,

priority-scheduled versions scale better but perform worse than a fast, non-priority

scheduler.

One surprising result is that pulling to compute PageRank and pushing resid-

uals outperforms a pure pull-based version (dd-pp-* vs. dd-basic). The read-mostly

109

10
0

10
1

10
2

10
1

10
2

10
3

10
4

no. of threads

ru
n

tim
e

(s
ec

.)
run time vs. no. of threads

dd−push
dd−push−prs
dd−push−prt
dd−pp−rsd
dd−pp−prs
dd−pp−prt
dd−basic
power−iter
GraphLab

(a) pld run time

0 10 20 30 40
0

5

10

15

20

25

30

35

40

no. of threads

sc
al

ab
ili

ty

scalability vs. no. of threads

dd−push
dd−push−prs
dd−push−prt
dd−pp−rsd
dd−pp−prs
dd−pp−prt
dd−basic
power−iter
ideal
GraphLab

(b) pld scalability

0 10 20 30 40
0

5

10

15

20

25

no. of threads

sp
ee

du
p

speedup vs. no. of threads

dd−push
dd−push−prs
dd−push−prt
dd−pp−rsd
dd−pp−prs
dd−pp−prt
dd−basic
power−iter
GraphLab

(c) pld speedup

10
0

10
1

10
2

10
2

10
3

10
4

10
5

no. of threads

ru
n

tim
e

(s
ec

.)

run time vs. no. of threads

dd−push
dd−push−prs
dd−push−prt
dd−pp−rsd
dd−pp−prs
dd−pp−prt
dd−basic
power−iter

(d) Twitter run time

0 10 20 30 40
0

5

10

15

20

25

30

35

40

no. of threads

sc
al

ab
ili

ty

scalability vs. no. of threads

dd−push
dd−push−prs
dd−push−prt
dd−pp−rsd
dd−pp−prs
dd−pp−prt
dd−basic
power−iter
ideal

(e) Twitter scalability

0 10 20 30 40
0

5

10

15

20

25

no. of threads

sp
ee

du
p

speedup vs. no. of threads

dd−push
dd−push−prs
dd−push−prt
dd−pp−rsd
dd−pp−prs
dd−pp−prt
dd−basic
power−iter

(f) Twitter speedup

10
0

10
1

10
2

10
1

10
2

10
3

10
4

10
5

no. of threads

ru
n

tim
e

(s
ec

.)

run time vs. no. of threads

dd−push
dd−push−prs
dd−push−prt
dd−pp−rsd
dd−pp−prs
dd−pp−prt
dd−basic
power−iter

(g) sd1 run time

0 10 20 30 40
0

5

10

15

20

25

30

35

40

no. of threads

sc
al

ab
ili

ty

scalability vs. no. of threads

dd−push
dd−push−prs
dd−push−prt
dd−pp−rsd
dd−pp−prs
dd−pp−prt
dd−basic
power−iter
ideal

(h) sd1 scalability

0 10 20 30 40
0

5

10

15

20

25

no. of threads

sp
ee

du
p

speedup vs. no. of threads

dd−push
dd−push−prs
dd−push−prt
dd−pp−rsd
dd−pp−prs
dd−pp−prt
dd−basic
power−iter

(i) sd1 speedup

10
0

10
1

10
2

10
2

10
3

10
4

10
5

no. of threads

ru
n

tim
e

(s
ec

.)

run time vs. no. of threads

dd−push
dd−push−prs
dd−push−prt
dd−pp−rsd
dd−pp−prs
dd−pp−prt
dd−basic
power−iter

(j) Friendster run time

0 10 20 30 40
0

5

10

15

20

25

30

35

40

no. of threads

sc
al

ab
ili

ty

scalability vs. no. of threads

dd−push
dd−push−prs
dd−push−prt
dd−pp−rsd
dd−pp−prs
dd−pp−prt
dd−basic
power−iter
ideal

(k) Friendster scalability

0 10 20 30 40
0

5

10

15

20

no. of threads

sp
ee

du
p

speedup vs. no. of threads

dd−push
dd−push−prs
dd−push−prt
dd−pp−rsd
dd−pp−prs
dd−pp−prt
dd−basic
power−iter

(l) Friendster speedup

Figure 6.1: Run time, scalability and speedup. Our data-driven, push-based PageR-
ank achieves the best speedup.

110

Table 6.3: The number of completed tasks (unit: 106)
pld sd1 twitter friendster

threads 1 40 1 40 1 40 1 40

dd-push 134 133 282 273 393 417 476 581
dd-push-prs 330 319 758 740 888 850 1076 1069
dd-push-prt 246 244 538 535 395 418 504 619
dd-pp-rsd 131 130 279 271 386 410 473 540
dd-pp-prs 311 303 712 716 963 835 1239 1212
dd-pp-prt 138 136 289 286 394 419 489 611
dd-basic 655 536 1029 896 1629 1526 1482 1356
power-iter 2606 2606 6716 6716 4297 4297 3104 3104

nature of pull-based algorithms are generally more cache friendly. Push-based algo-

rithms have a much larger write-set per iteration, and writes to common locations

fundamentally do not scale. The extra cost of the pushes, however, is made up by

a reduction in the number of tasks. Table 6.3 shows the number of completed tasks

for each algorithm, and we see that pull-push methods (dd-pp-rsd) lead to 70-80%

reduction in the number of tasks executed (compared to dd-basic). The pushing of

residual allows a node to selectively activate a neighbor, and thus greatly reduces

the total work performed (effectively, PageRanks are only computed when they are

needed). On the other hand, the basic pull algorithm must unconditionally generate

tasks for each of a node’s neighbors when the node is updated. It is more understand-

able that the push-only version outperforms all others. The pushing of residual is

equivalent to the computation of PageRank deltas; thus, the pull can be eliminated

without any extra cost. This both reduces the number of edges inspected for every

node (from in and out to just out) and reduces the total computation (instructions).

Serially, a deterministic scheduler processes the same nodes, thus it does not save

on the total number of tasks, as can be seen in the Table 6.3 rows for dd-push and

dd-pp-rsd. The variation in those rows is due to the variation in scheduling order

(especially at higher thread counts) though the variation is relatively minor.

111

In Table 6.3, all reported numbers include all tasks (nodes) considered to

make scheduling decisions. For *-prt methods, this includes the nodes which are

duplicates in the worklist. For *-prs methods, this includes each round’s examination

of all the nodes in the worklist to pick the priority threshold. Priority scheduling

favoring priority order, denoted *-prt, shows the high cost of duplicate items in the

worklist. This priority scheduler must insert duplicate tasks every time a node moves

to a new priority bin. This means that many tasks are useless; they discover as their

first action that there is nothing to do and complete. Figure 6.1 shows that this has

a distinct time cost. Although filtering out duplicates is not expensive, the total

work for filtering is significant. Priority scheduling favoring set semantics, denoted

*-prs, also must examine a significant number of nodes to determine which tasks to

pick at each scheduling round. We observe that the total number of nodes in the

worklist decreases rapidly, making the working set after several rounds significantly

smaller than the entire graph. This boost in locality helps offset the extra data

accesses.

It is interesting to see that optimizing for cache behavior (pull-based) may

not always be as effective as optimizing for pushing maximum information quickly

(push-based). The push-only PageRank (dd-push-*) is entirely read-write access,

while the pull-only version (dd-basic) does one write per node processed. In general,

read-mostly access patterns are significantly more cache and coherence friendly.

From this perspective, the pull-push versions, denoted dd-pp-*, should be the worst

as they have the read set of the pull versions and the write set of the push versions.

The extra writes are not just an alternate implementation of the PageRank update,

but rather influence the scheduling of tasks. The extra writes weigh nodes, allowing

nodes to only be processed when profitable. This improved scheduling makes up

for the increased write load. Given the scheduling benefits of the residual push, it

is easy to see that the push-only version is superior to the pull-push version as it

112

Table 6.4: Run time of different PageRank implementations on the pld dataset

System Method Threads
40 32 16 8 1

GraphLab

sync 478 secs. 496 secs. 594 secs. 845 secs. 3,332 secs.
async-fifo 500 secs. 580 secs. 618 secs. 898 secs. 5,194 secs.
async-qfifo 788 secs. 804 secs. 970 secs. 1,292 secs. 5,098 secs.
async-sweep 4,186 secs. 5,162 secs. 9,156 secs. > 4 hrs. > 4 hrs.
async-prt > 4 hrs. > 4 hrs. > 4 hrs. > 4 hrs. > 4 hrs.

Galois

power-iter 132 secs. 155 secs. 299 secs. 510 secs. 3,650 secs.
dd-basic 62 secs. 82 secs. 140 secs. 269 secs. 2,004 secs.
dd-pp-prt 58 secs. 67 secs. 118 secs. 193 secs. 1,415 secs.
dd-push 17 secs. 22 secs. 36 secs. 53 secs. 355 secs.

reduces the memory load and work per iteration. We do note that when looking

at the self-relative scalability of the implementations, the read-mostly algorithms,

while slower, have better scalability than the push and pull-push variants.

Table 6.4 shows a comparison between our data-driven PageRank algorithms

(implemented using Galois) and GraphLab’s PageRank implementations when vary-

ing the scheduling on the pld dataset. GraphLab supports different schedulers, but

we find the simple synchronous one to be the best. We note that the GraphLab’s

asynchronous method refers to a Gauss–Seidel style solver, which still is a bulk-

synchronous, topology-driven approach. The power-iter version (in Galois) is ac-

tually a classic synchronous implementation in this sense, but still notably faster.

While GraphLab’s topology-driven synchronous implementation has similar single

threaded performance to the Galois topology-driven synchronous implementation,

power-iter scales much better than GraphLab. Also, all the data-driven implemen-

tations (dd-*) are much faster than GraphLab’s PageRank implementations. We

see that with 40 threads the fastest GraphLab’s method takes 478 seconds whereas

our push-based PageRank takes 17 seconds.

113

6.6 Discussion

Priority scheduling needs some algorithmic margin to be competitive as it

is more costly. While it is not surprising that priority scheduling is slower than

simple scalable scheduling, this has some important consequences. First, the benefit

is dependent on both algorithmic factors and input characteristics. When schedul-

ing changes the asymptotic complexity of an algorithm, there can be huge margins

available. In PageRank, there is a theoretical margin available, but it is relatively

small. This limits the extra computation that can be spent on scheduling over-

head without hurting performance. Second, the margin available depends on input

characteristics. For many analytic algorithms, scheduling increases in importance

as the diameter of the graph increases. Since PageRank is often run on power-law

style graphs with low diameter, we expect a small margin available from priority

scheduling.

Good priority schedulers can scale competitively with general purpose sched-

ulers. We observe that multiple priority scheduler implementations scale well. We

implement two very different styles of priority schedulers which pick different points

in the design and feature space. This is encouraging as it leads us to believe that

such richer semantic building blocks can be used by algorithm designers. PageR-

ank updates priorities often—a use case which is hard to support efficiently and

scalably. Even many high-performance, serial priority queues do not support this

operation. Constructing a concurrent, scalable priority scheduler which maintains

set semantics by adjusting priorities for existing items in the scheduler is an open

question. The reason is simply one of global knowledge. Knowing whether to insert

an item or whether it is already scheduled and thus only needs its priority adjusted

requires global knowledge of the system. Maintaining and updating global knowl-

edge concurrently in a NUMA system is rarely scalable. For scalability, practical

implementations will contain multiple queues, meaning that not only does one need

114

to track whether a task is scheduled, but on which queue the task is scheduled. The

scheduler we produced for *-prs stores set semantics information by marking nodes

in the graph and periodically rechecks priority. This essentially introduces latency

between updating a priority and having the scheduler see the new priority. The

amount of latency depends on how many iterations proceed before rechecking. This

number determines the overhead of the scheduler.

6.7 Future Work

Although PageRank is a simple graph analytic algorithm, there are many in-

teresting implementation details one needs to consider to achieve a high-performance

implementation. We show that data-driven implementations are significantly faster

than traditional power iteration methods. PageRank has a simple vertex update

equation. However, this update can be mapped to the graph in several ways by

changing how and when information flows through the graph. These algorithmic

changes can significantly affect the performance. Within this space, one can also

profitably consider the order in which updates occur to maximize convergence speed.

While we investigate these implementation variants for PageRank—seeing perfor-

mance improvements of 28x over standard power iterations—these considerations

can apply to many other convergence-based graph analytic algorithms.

Based on the lessons learned from the case study with scalable data-driven

PageRank, we expect that we can develop parallel data-driven algorithms for the

methods we presented in the previous chapters. We plan to develop parallel data-

driven community detection and clustering algorithms.

115

Chapter 7

Conclusions

In this thesis, we have proposed scalable overlapping community detection

and clustering algorithms that effectively identify high quality overlapping commu-

nities and clusters in various real-world datasets.

We started our discussion with a personalized PageRank-based overlapping

community detection method, which we call nise. The key idea of nise is to find

good seeds and then greedily expand these seeds using a personalized PageRank

clustering scheme. By developing nise, we suggest new ideas in the prototypi-

cal “seed-and-grow” meta-algorithm for overlapping communities. Experimental

results show that nise significantly outperforms other state-of-the-art overlapping

community detection methods in terms of run time, cohesiveness of communities,

and ground-truth accuracy on large-scale real-world networks.

By exploiting the connection between community detection and clustering,

we were able to develop a more principled algorithm. We present a novel extension

of the k-means formulation that simultaneously considers non-exhaustive and over-

lapping clustering called NEO-K-Means. The underlying objective and algorithm

seamlessly generalize the classic k-means approach and enable a new class of ap-

plications. When we evaluate this new method on synthetic and real-world data,

116

it shows the best performance in terms of finding the ground-truth clusters among

a large class of state-of-the-art methods. We show that a weighted kernel k-means

variation of NEO-K-Means provides a principled way to find a set of overlapping

communities in large-scale networks. We conclude that NEO-K-Means is a useful

algorithm to analyze much of the complex data emerging in current data-centric

applications.

We further improved the performance of NEO-K-Means by studying a semidef-

inite programming technique. The iterative NEO-K-Means algorithm is fast but

suffers from the classic problem that iterative algorithms for k-means fall into local

minimizers given poor initialization. To get a more reliable and accurate solution,

we study a convex relaxation of the NEO-K-Means objective and also formulate a

low-rank SDP for NEO-K-Means. Our new convex and low-rank objective func-

tions provide a new, principled framework to cluster vector and graph data. When

our non-convex low-rank method is optimized through an augmented Lagrangian

method, it produces state-of-the-art quality results for both data clustering as well

as for overlapping community detection.

We extended our NEO-K-Means ideas to co-clustering, which enables us

to identify overlapping communities in bipartite graphs. We formulate the non-

exhaustive, overlapping co-clustering problem and propose the NEO-Co-Clustering

objective function. To optimize the objective, we develop a simple iterative algo-

rithm which we call NEO-CC algorithm. We prove that the NEO-CC algorithm

monotonically decreases the NEO-Co-Clustering objective function. Experimental

results show that our NEO-CC algorithm is able to effectively capture the underlying

co-clustering structure of the data and discover high quality overlapping communi-

ties on real-world bipartite graphs.

Finally, we studied the design of parallel data-driven algorithms, which en-

ables us to further increase the scalability of our overlapping community detection

117

algorithms. Using PageRank as a model problem, we investigate the impact of

different algorithm design choices. The design choices affect both single-threaded

performance as well as parallel scalability. The implementation lessons not only

guide efficient implementations of many graph mining algorithms but also provide

a framework for designing new scalable algorithms, especially for large-scale com-

munity detection.

118

Bibliography

[1] A Java Library for Multi-Label Learning. http://mulan.sourceforge.net/

datasets.html.

[2] GroupLens Research. http://grouplens.org/datasets/movielens/.

[3] Rat brains are basically wired up like miniature internets. www.engadget.com/.

[4] Stanford Network Analysis Project. http://snap.stanford.edu/.

[5] B. Abrahao, S. Soundarajan, J. Hopcroft, and R. Kleinberg. On the separability

of structural classes of communities. In Proceedings of the 18th ACM Interna-

tional Conference on Knowledge Discovery and Data mining, pages 624–632,

2012.

[6] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann. Link communities reveal multiscale

complexity in networks. Nature, 466:761–764, 2010.

[7] R. Andersen, F. Chung, and K. Lang. Local graph partitioning using PageRank

vectors. In Proceedings of the 47th Annual IEEE Symposium on Foundations

of Computer Science, pages 475–486, 2006.

[8] R. Andersen and K. J. Lang. Communities from seed sets. In Proceedings of

the 15th International Conference on World Wide Web, pages 223–232, 2006.

119

[9] D. Baier, W. Gaul, and M. Schader. Two-mode overlapping clustering with ap-

plications to simultaneous benefit segmentation and market structuring. Clas-

sification and Knowledge Organization, pages 557–566, 1997.

[10] A. Banerjee, I. S. Dhillon, J. Ghosh, S. Merugu, and D. S. Modha. A generalized

maximum entropy approach to bregman co-clustering and matrix approxima-

tions. Journal of Machine Learning Research, 8:1919–1986, 2007.

[11] A. Banerjee, C. Krumpelman, J. Ghosh, S. Basu, and R. J. Mooney. Model-

based overlapping clustering. In Proceedings of the 11th ACM SIGKDD in-

ternational conference on Knowledge discovery in data mining, pages 532–537,

2005.

[12] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh. Clustering with bregman

divergences. Journal of Machine Learning Research, 6:1705–1749, 2005.

[13] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Sci-

ence, 286(5439):509–512, 1999.

[14] C.-E. ben N’Cir, G. Cleuziou, and N. Essoussi. Identification of non-disjoint

clusters with small and parameterizable overlaps. In Proceedings of the Inter-

national Conference on Computer Applications Technology, pages 1–6, 2013.

[15] Y. Bengio, O. Delalleau, and N. Le Roux. Label Propagation and Quadratic

Criterion. MIT Press, 2006.

[16] P. Berkhin. A survey on PageRank computing. Internet Mathematics, 2:73–120,

2005.

[17] J. C. Bezdek, R. Ehrlich, and W. Full. FCM: The fuzzy c-means clustering

algorithm. 10(2-3):191–203, 1984.

120

[18] F. Bonchi, P. Esfandiar, D. F. Gleich, C. Greif, and L. V. Lakshmanan. Fast

matrix computations for pairwise and columnwise commute times and Katz

scores. Internet Mathematics, 8(1-2):73–112, 2012.

[19] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown. Learning multi-label scene

classification. Pattern Recognition, 37:1757–1771, 2004.

[20] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search

engine. Computer Networks and ISDN Systems, 30(1-7):107–117, 1998.

[21] S. Burer and R. D. Monteiro. A nonlinear programming algorithm for solving

semidefinite programs via low-rank factorization. Mathematical Programming,

95:329–357, 2003.

[22] S. Burer and R. D. Monteiro. Local minima and convergence in low-rank

semidefinite programming. Mathematical Programming, 103(3):427–444, 2005.

[23] R. S. Burt. Structural Holes: The Social Structure of Competition. Harvard

University Press, 1995.

[24] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm

for bound constrained optimization. SIAM Journal on Scientific Computing,

16(5):1190–1208, 1995.

[25] S. Chawla and A. Gionis. k-means--: a unified approach to clustering and

outlier detection. In Proceedings of the 13th SIAM International Conference

on Data Mining, pages 189–197, 2013.

[26] Y.-L. Chen and H.-L. Hu. An overlapping cluster algorithm to provide non-

exhaustive clustering. 173(3):762–780, 2006.

[27] Y. Cheng and G. Church. Biclustering of expression data. In Proceedings of

121

the 8th International Conference on Intelligent Systems for Molecular Biology,

pages 93–103, 2000.

[28] H. Cho, I. S. Dhillon, Y. Guan, and S. Sra. Minimum sum-squared residue

co-clustering of gene expression data. In SIAM International Conference on

Data Mining, pages 114–125, 2004.

[29] G. Cleuziou. An extended version of the k-means method for overlapping clus-

tering. In Proceedings of the 19th International Conference on Pattern Recog-

nition, pages 1–4, 2008.

[30] M. Coscia, G. Rossetti, F. Giannotti, and D. Pedreschi. Demon: a local-first

discovery method for overlapping communities. In Proceedings of the 18th ACM

International Conference on Knowledge Discovery and Data mining, pages 615–

623, 2012.

[31] M. Deodhar, G. Gupta, J. Ghosh, H. Cho, and I. Dhillon. A scalable framework

for discovering coherent co-clusters in noisy data. In Proceedings of the 26th

Annual International Conference on Machine Learning, pages 241–248, 2009.

[32] I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors:

A multilevel approach. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 29(11):1944–1957, 2007.

[33] I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering.

In Proceedings of the 9th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 89–98, 2003.

[34] D. Easley and J. Kleinberg. Networks, Crowds, and Markets. Cambridge Uni-

versity Press, 2010.

[35] A. Elisseeff and J. Weston. A kernel method for multi-labelled classification.

122

In Proceedings of the Neural Information Processing Systems Conference, pages

681–687, 2001.

[36] U. Gargi, W. Lu, V. Mirrokni, and S. Yoon. Large-scale community detection

on YouTube for topic discovery and exploration. In Proceedings of the 5th

International AAAI Conference on Weblogs and Social Media, pages 486–489,

2011.

[37] D. F. Gleich and C. Seshadhri. Vertex neighborhoods, low conductance cuts,

and good seeds for local community methods. In Proceedings of the 18th ACM

International Conference on Knowledge Discovery and Data mining, pages 597–

605, 2012.

[38] D. F. Gleich, L. Zhukov, and P. Berkhin. Fast parallel PageRank: A linear

system approach. Technical Report YRL-2004-038, Yahoo! Research Labs,

2004.

[39] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex program-

ming, version 2.1. http://cvxr.com/cvx, March 2014.

[40] M. C. Grant and S. P. Boyd. Graph implementations for nonsmooth convex

programs. In Recent Advances in Learning and Control, volume 371 of Lecture

Notes in Control and Information Sciences, pages 95–110. 2008.

[41] T. Hocking, J. Vert, A. Joulin, and F. R. Bach. Clusterpath: an algorithm for

clustering using convex fusion penalties. In Proceedings of the 28th International

Conference on Machine Learning, pages 745–752, 2011.

[42] Y. Hou, J. J. Whang, D. F. Gleich, and I. S. Dhillon. Fast multiplier methods

to optimize non-exhaustive, overlapping clustering. Under review, 2015.

[43] Y. Hou, J. J. Whang, D. F. Gleich, and I. S. Dhillon. Non-exhaustive, overlap-

ping clustering via low-rank semidefinite programming. In Proceedings of the

123

21th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,

pages 427–436, 2015.

[44] A. K. Jain. Data clustering: 50 years beyond k-means. 31(8):651–666, 2010.

[45] G. Jeh and J. Widom. Scaling personalized web search. Proceedings of the 12th

international conference on World Wide Web, pages 271–279, 2003.

[46] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular

graphs. Journal of Parallel and Distributed Computing, 48:96–129, 1998.

[47] I. M. Kloumann and J. M. Kleinberg. Community membership identification

from small seed sets. In Proceedings of the 18th ACM International Conference

on Knowledge Discovery and Data mining, pages 1366–1375, 2014.

[48] D. E. Knuth. The Stanford GraphBase: A Platform for Combinatorial Com-

puting. Addison-Wesley, 1993.

[49] B. Kulis, A. C. Surendran, and J. C. Platt. Fast low-rank semidefinite pro-

gramming for embedding and clustering. In Proceedings of the International

Conference on Artifical Intelligence and Statistics, pages 235–242, 2007.

[50] A. Lancichinetti, F. Radicchi, J. Ramasco, and S. Fortunato. Finding statisti-

cally significant communities in networks. PLoS ONE, 6(4), 2011.

[51] K. Lang. Fixing two weaknesses of the spectral method. In Proceedings of the

Neural Information Processing Systems Conference, pages 715–722, 2005.

[52] A. Lenharth, D. Nguyen, and K. Pingali. Concurrent priority queues are not

good priority schedulers. In Proceedings of the 21th International European

Conference on Parallel and Distributed Computing, pages 209–221, 2015.

124

[53] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Community struc-

ture in large networks: Natural cluster sizes and the absence of large well-

defined clusters. Internet Mathematics, 6(1):29–123, 2009.

[54] F. Lindsten, H. Ohlsson, and L. Ljung. Just relax and come clustering! a

convexification of k-means clustering. Technical report, Linköpings universitet,

2011.

[55] S. P. Lloyd. Least squares quantization in PCM. 28(2):129–137, 1982.

[56] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein.

Distributed graphlab: A framework for machine learning and data mining in

the cloud. The Proceedings of the VLDB Endowment, pages 716–727, 2012.

[57] H. Lu, Y. Hong, W. N. Street, F. Wang, and H. Tong. Overlapping clustering

with sparseness constraints. In Proceedings of the 12th IEEE International

Conference on Data Mining Workshops, pages 486–494, 2012.

[58] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M.

Dawson. The bottlenose dolphin community of doubtful sound features a large

proportion of long-lasting associations: Can geographic isolation explain this

unique trait? Behavioral Ecology and Sociobiology, 54(4):396–405, 2003.

[59] M. W. Mahoney, L. Orecchia, and N. K. Vishnoi. A local spectral method for

graphs: With applications to improving graph partitions and exploring data

graphs locally. Journal of Machine Learning Research, 13(1):2339–2365, 2012.

[60] F. McSherry. A uniform approach to accelerated PageRank computation. Pro-

ceedings of the 14th international conference on World Wide Web, pages 575–

582, 2005.

[61] A. Mislove, H. S. Koppula, K. P. Gummadi, P. Druschel, and B. Bhattacharjee.

125

Growth of the Flickr social network. In Proceedings of the 1st Workshop on

Online Social Networks, pages 25–30, 2008.

[62] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infrastructure for graph

analytics. Proceedings of the 24th ACM Symposium on Operating Systems Prin-

ciples, pages 456–471, 2013.

[63] D. Nguyen and K. Pingali. Synthesizing concurrent schedulers for irregular

algorithms. Proceedings of the 16th International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 333–344,

2011.

[64] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation rank-

ing: Bringing order to the web. Technical Report 1999-66, Stanford University,

1999.

[65] G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlapping com-

munity structure of complex networks in nature and society. Nature, 435:814–

818, 2005.

[66] J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu. Automatic multimedia

cross-modal correlation discovery. In Proceedings of the 10th ACM International

Conference on Knowledge Discovery and Data Mining, pages 653–658, 2004.

[67] J. Peng. 0-1 semidefinite programming for spectral clustering: Modeling and

approximation. Technical report, Advanced Optimization Laboratory, McMas-

ter University, 2005.

[68] J. Peng and Y. Wei. Approximating k-means-type clustering via semidefinite

programming. SIAM Journal on Optimization, 18(1):186–205, 2007.

[69] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan, R. Kaleem,

T.-H. Lee, A. Lenharth, R. Manevich, M. Mndez-Lojo, D. Prountzos, and

126

X. Sui. The Tao of parallelism in algorithms. Proceedings of the 32nd ACM

SIGPLAN Conference on Programming Language Design and Implementation,

pages 12–25, 2011.

[70] A. Prelić, S. Bleuler, P. Zimmermann, A. Wille, P. Bühlmann, W. Gruissem,

L. Hennig, L. Thiele, and E. Zitzler. A systematic comparison and evaluation of

biclustering methods for gene expression data. Bioinformatics, 22:1122–1129,

2006.

[71] B. S. Rees and K. B. Gallagher. Overlapping community detection by collective

friendship group inference. In International Conference on Advances in Social

Networks Analysis and Mining, pages 375–379, 2010.

[72] H. Shen, X. Cheng, K. Cai, and M.-B. Hu. Detect overlapping and hierarchical

community structure in networks. Physica A, 388(8):1706–1712, 2009.

[73] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

[74] J. Shun and G. E. Blelloch. Ligra: A lightweight graph processing framework

for shared memory. Proceedings of the 18th ACM SIGPLAN symposium on

Principles and practice of parallel programming, pages 135–146, 2013.

[75] H. H. Song, B. Savas, T. W. Cho, V. Dave, Z. Lu, I. S. Dhillon, Y. Zhang, and

L. Qiu. Clustered embedding of massive social networks. ACM SIGMETRICS

Performance Evaluation Review, 40(1):331–342, 2012.

[76] K. Trohidis, G. Tsoumakas, G. Kalliris, and I. P. Vlahavas. Multi-label classi-

fication of music into emotions. In Proceedings of the International Conference

on Music Information Retrieval, pages 325–330, 2008.

[77] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ networks.

Nature, 393(6684):440–442, 1998.

127

[78] J. J. Whang, I. S. Dhillon, and D. F. Gleich. Non-exhaustive, overlapping

k-means. In Proceedings of the 15th SIAM International Conference on Data

Mining, pages 936–944, 2015.

[79] J. J. Whang, D. F. Gleich, and I. S. Dhillon. Overlapping community detection

using seed set expansion. In Proceedings of the 22nd ACM International Con-

ference on Information and Knowledge Management, pages 2099–2108, 2013.

[80] J. J. Whang, D. F. Gleich, and I. S. Dhillon. Overlapping community detection

using neighborhood-inflated seed expansion. Under review, 2015.

[81] J. J. Whang, A. Lenharth, I. S. Dhillon, and K. Pingali. Scalable data-driven

pagerank: Algorithms, system issues, and lessons learned. In Proceedings of the

21th International European Conference on Parallel and Distributed Comput-

ing, pages 438–450, 2015.

[82] J. J. Whang, X. Sui, and I. S. Dhillon. Scalable and memory-efficient clustering

of large-scale social networks. In Proceedings of the 12th IEEE International

Conference on Data Mining, pages 705–714, 2012.

[83] J. Xie, S. Kelley, and B. K. Szymanski. Overlapping community detection in

networks: the state of the art and comparative study. ACM Computing Surveys,

45(4):43:1–43:35, 2013.

[84] E. P. Xing and M. I. Jordan. On semidefinite relaxations for normalized k-cut

and connections to spectral clustering. Technical Report UCB/USD-3-1265,

University of California, Berkeley, 2003.

[85] J. Yang and J. Leskovec. Overlapping community detection at scale: a nonnega-

tive matrix factorization approach. In Proceedings of the 6th ACM International

Conference on Web Search and Data Mining, pages 587–596, 2013.

128

[86] S. Zhang, R.-S. Wang, and X.-S. Zhang. Identification of overlapping commu-

nity structure in complex networks using fuzzy c-means clustering. Physica A,

374(1):483–490, 2007.

[87] Y. Zhang, Q. Gao, L. Gao, and C. Wang. Priter: A distributed framework

for prioritizing iterative computations. IEEE Transactions on Parallel and

Distributed Systems, 24(9):1884–1893, 2013.

[88] Y. Zhang, Q. Gao, L. Gao, and C. Wang. Maiter: An asynchronous graph pro-

cessing framework for delta-based accumulative iterative computation. IEEE

Transactions on Parallel and Distributed Systems, 25(8):2091–2100, 2014.

129

