26,823 research outputs found

    Fast Management of Permutation Groups I

    Full text link

    Survival and disinfection of SARS-Cov-2 in environment and contaminated surface

    Get PDF
    The detection of SARS-Cov-2 in the sewage and water resources has increased the awareness among the people about the possibility survival of SARS-Cov-2 in the environment and the potential to transmit into the human through food chain or water resources. Moreover, the surface contaminated by the virus need to be disinfected frequently by using an effective disinfectant, the current chapter discussed the efficiency of the most traditional treatment process of the sewage and wastewater, and their role in the elimination of the virus as well as the sterility assurance level concept. Moreover, the chemical disinfectant used currently and their temporary efficiency has been reviewed

    Second-generation PLINK: rising to the challenge of larger and richer datasets

    Get PDF
    PLINK 1 is a widely used open-source C/C++ toolset for genome-wide association studies (GWAS) and research in population genetics. However, the steady accumulation of data from imputation and whole-genome sequencing studies has exposed a strong need for even faster and more scalable implementations of key functions. In addition, GWAS and population-genetic data now frequently contain probabilistic calls, phase information, and/or multiallelic variants, none of which can be represented by PLINK 1's primary data format. To address these issues, we are developing a second-generation codebase for PLINK. The first major release from this codebase, PLINK 1.9, introduces extensive use of bit-level parallelism, O(sqrt(n))-time/constant-space Hardy-Weinberg equilibrium and Fisher's exact tests, and many other algorithmic improvements. In combination, these changes accelerate most operations by 1-4 orders of magnitude, and allow the program to handle datasets too large to fit in RAM. This will be followed by PLINK 2.0, which will introduce (a) a new data format capable of efficiently representing probabilities, phase, and multiallelic variants, and (b) extensions of many functions to account for the new types of information. The second-generation versions of PLINK will offer dramatic improvements in performance and compatibility. For the first time, users without access to high-end computing resources can perform several essential analyses of the feature-rich and very large genetic datasets coming into use.Comment: 2 figures, 1 additional fil
    corecore