15,453 research outputs found

    A Unified Approximation Framework for Compressing and Accelerating Deep Neural Networks

    Full text link
    Deep neural networks (DNNs) have achieved significant success in a variety of real world applications, i.e., image classification. However, tons of parameters in the networks restrict the efficiency of neural networks due to the large model size and the intensive computation. To address this issue, various approximation techniques have been investigated, which seek for a light weighted network with little performance degradation in exchange of smaller model size or faster inference. Both low-rankness and sparsity are appealing properties for the network approximation. In this paper we propose a unified framework to compress the convolutional neural networks (CNNs) by combining these two properties, while taking the nonlinear activation into consideration. Each layer in the network is approximated by the sum of a structured sparse component and a low-rank component, which is formulated as an optimization problem. Then, an extended version of alternating direction method of multipliers (ADMM) with guaranteed convergence is presented to solve the relaxed optimization problem. Experiments are carried out on VGG-16, AlexNet and GoogLeNet with large image classification datasets. The results outperform previous work in terms of accuracy degradation, compression rate and speedup ratio. The proposed method is able to remarkably compress the model (with up to 4.9x reduction of parameters) at a cost of little loss or without loss on accuracy.Comment: 8 pages, 5 figures, 6 table

    End-to-End Cross-Modality Retrieval with CCA Projections and Pairwise Ranking Loss

    Full text link
    Cross-modality retrieval encompasses retrieval tasks where the fetched items are of a different type than the search query, e.g., retrieving pictures relevant to a given text query. The state-of-the-art approach to cross-modality retrieval relies on learning a joint embedding space of the two modalities, where items from either modality are retrieved using nearest-neighbor search. In this work, we introduce a neural network layer based on Canonical Correlation Analysis (CCA) that learns better embedding spaces by analytically computing projections that maximize correlation. In contrast to previous approaches, the CCA Layer (CCAL) allows us to combine existing objectives for embedding space learning, such as pairwise ranking losses, with the optimal projections of CCA. We show the effectiveness of our approach for cross-modality retrieval on three different scenarios (text-to-image, audio-sheet-music and zero-shot retrieval), surpassing both Deep CCA and a multi-view network using freely learned projections optimized by a pairwise ranking loss, especially when little training data is available (the code for all three methods is released at: https://github.com/CPJKU/cca_layer).Comment: Preliminary version of a paper published in the International Journal of Multimedia Information Retrieva

    Stochastic Optimization for Deep CCA via Nonlinear Orthogonal Iterations

    Full text link
    Deep CCA is a recently proposed deep neural network extension to the traditional canonical correlation analysis (CCA), and has been successful for multi-view representation learning in several domains. However, stochastic optimization of the deep CCA objective is not straightforward, because it does not decouple over training examples. Previous optimizers for deep CCA are either batch-based algorithms or stochastic optimization using large minibatches, which can have high memory consumption. In this paper, we tackle the problem of stochastic optimization for deep CCA with small minibatches, based on an iterative solution to the CCA objective, and show that we can achieve as good performance as previous optimizers and thus alleviate the memory requirement.Comment: in 2015 Annual Allerton Conference on Communication, Control and Computin

    Differentiable Programming Tensor Networks

    Full text link
    Differentiable programming is a fresh programming paradigm which composes parameterized algorithmic components and trains them using automatic differentiation (AD). The concept emerges from deep learning but is not only limited to training neural networks. We present theory and practice of programming tensor network algorithms in a fully differentiable way. By formulating the tensor network algorithm as a computation graph, one can compute higher order derivatives of the program accurately and efficiently using AD. We present essential techniques to differentiate through the tensor networks contractions, including stable AD for tensor decomposition and efficient backpropagation through fixed point iterations. As a demonstration, we compute the specific heat of the Ising model directly by taking the second order derivative of the free energy obtained in the tensor renormalization group calculation. Next, we perform gradient based variational optimization of infinite projected entangled pair states for quantum antiferromagnetic Heisenberg model and obtain start-of-the-art variational energy and magnetization with moderate efforts. Differentiable programming removes laborious human efforts in deriving and implementing analytical gradients for tensor network programs, which opens the door to more innovations in tensor network algorithms and applications.Comment: Typos corrected, discussion and refs added; revised version accepted for publication in PRX. Source code available at https://github.com/wangleiphy/tensorgra
    corecore