1,006 research outputs found

    A Selective Review of Group Selection in High-Dimensional Models

    Full text link
    Grouping structures arise naturally in many statistical modeling problems. Several methods have been proposed for variable selection that respect grouping structure in variables. Examples include the group LASSO and several concave group selection methods. In this article, we give a selective review of group selection concerning methodological developments, theoretical properties and computational algorithms. We pay particular attention to group selection methods involving concave penalties. We address both group selection and bi-level selection methods. We describe several applications of these methods in nonparametric additive models, semiparametric regression, seemingly unrelated regressions, genomic data analysis and genome wide association studies. We also highlight some issues that require further study.Comment: Published in at http://dx.doi.org/10.1214/12-STS392 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors

    Full text link
    Penalized regression is an attractive framework for variable selection problems. Often, variables possess a grouping structure, and the relevant selection problem is that of selecting groups, not individual variables. The group lasso has been proposed as a way of extending the ideas of the lasso to the problem of group selection. Nonconvex penalties such as SCAD and MCP have been proposed and shown to have several advantages over the lasso; these penalties may also be extended to the group selection problem, giving rise to group SCAD and group MCP methods. Here, we describe algorithms for fitting these models stably and efficiently. In addition, we present simulation results and real data examples comparing and contrasting the statistical properties of these methods

    Parallel Selective Algorithms for Big Data Optimization

    Full text link
    We propose a decomposition framework for the parallel optimization of the sum of a differentiable (possibly nonconvex) function and a (block) separable nonsmooth, convex one. The latter term is usually employed to enforce structure in the solution, typically sparsity. Our framework is very flexible and includes both fully parallel Jacobi schemes and Gauss- Seidel (i.e., sequential) ones, as well as virtually all possibilities "in between" with only a subset of variables updated at each iteration. Our theoretical convergence results improve on existing ones, and numerical results on LASSO, logistic regression, and some nonconvex quadratic problems show that the new method consistently outperforms existing algorithms.Comment: This work is an extended version of the conference paper that has been presented at IEEE ICASSP'14. The first and the second author contributed equally to the paper. This revised version contains new numerical results on non convex quadratic problem

    APPLE: Approximate Path for Penalized Likelihood Estimators

    Full text link
    In high-dimensional data analysis, penalized likelihood estimators are shown to provide superior results in both variable selection and parameter estimation. A new algorithm, APPLE, is proposed for calculating the Approximate Path for Penalized Likelihood Estimators. Both the convex penalty (such as LASSO) and the nonconvex penalty (such as SCAD and MCP) cases are considered. The APPLE efficiently computes the solution path for the penalized likelihood estimator using a hybrid of the modified predictor-corrector method and the coordinate-descent algorithm. APPLE is compared with several well-known packages via simulation and analysis of two gene expression data sets.Comment: 24 pages, 9 figure

    Wide・Deepモデルを用いた機械学習を高速化するためのアルゴリズム

    Get PDF
    京都大学新制・課程博士博士(情報学)甲第23310号情博第746号新制||情||127(附属図書館)京都大学大学院情報学研究科知能情報学専攻(主査)教授 鹿島 久嗣, 教授 田中 利幸, 教授 山下 信雄学位規則第4条第1項該当Doctor of InformaticsKyoto UniversityDFA

    A Unified Successive Pseudo-Convex Approximation Framework

    Get PDF
    In this paper, we propose a successive pseudo-convex approximation algorithm to efficiently compute stationary points for a large class of possibly nonconvex optimization problems. The stationary points are obtained by solving a sequence of successively refined approximate problems, each of which is much easier to solve than the original problem. To achieve convergence, the approximate problem only needs to exhibit a weak form of convexity, namely, pseudo-convexity. We show that the proposed framework not only includes as special cases a number of existing methods, for example, the gradient method and the Jacobi algorithm, but also leads to new algorithms which enjoy easier implementation and faster convergence speed. We also propose a novel line search method for nondifferentiable optimization problems, which is carried out over a properly constructed differentiable function with the benefit of a simplified implementation as compared to state-of-the-art line search techniques that directly operate on the original nondifferentiable objective function. The advantages of the proposed algorithm are shown, both theoretically and numerically, by several example applications, namely, MIMO broadcast channel capacity computation, energy efficiency maximization in massive MIMO systems and LASSO in sparse signal recovery.Comment: submitted to IEEE Transactions on Signal Processing; original title: A Novel Iterative Convex Approximation Metho
    corecore