7,294 research outputs found

    Efficient Rank Reduction of Correlation Matrices

    Get PDF
    Geometric optimisation algorithms are developed that efficiently find the nearest low-rank correlation matrix. We show, in numerical tests, that our methods compare favourably to the existing methods in the literature. The connection with the Lagrange multiplier method is established, along with an identification of whether a local minimum is a global minimum. An additional benefit of the geometric approach is that any weighted norm can be applied. The problem of finding the nearest low-rank correlation matrix occurs as part of the calibration of multi-factor interest rate market models to correlation.Comment: First version: 20 pages, 4 figures Second version [changed content]: 21 pages, 6 figure

    Spin gauge symmetry in the action principle for classical relativistic particles

    Full text link
    We suggest that the physically irrelevant choice of a representative worldline of a relativistic spinning particle should correspond to a gauge symmetry in an action approach. Using a canonical formalism in special relativity, we identify a (first-class) spin gauge constraint, which generates a shift of the worldline together with the corresponding transformation of the spin on phase space. An action principle is formulated for which a minimal coupling to fields is straightforward. The electromagnetic interaction of a monopole-dipole particle is constructed explicitly.Comment: 9 pages, 1 figur

    Ehrenfest theorem, Galilean invariance and nonlinear Schr\"odinger equations

    Full text link
    Galilean invariant Schr\"odinger equations possessing nonlinear terms coupling the amplitude and the phase of the wave function can violate the Ehrenfest theorem. An example of this kind is provided. The example leads to the proof of the theorem: A Galilean invariant Schr\"odinger equation derived from a lagrangian density obeys the Ehrenfest theorem. The theorem holds for any linear or nonlinear lagrangian.Comment: Latex format, no figures, submitted to journal of physics

    Developing the MTO Formalism

    Full text link
    We review the simple linear muffin-tin orbital method in the atomic-spheres approximation and a tight-binding representation (TB-LMTO-ASA method), and show how it can be generalized to an accurate and robust Nth order muffin-tin orbital (NMTO) method without increasing the size of the basis set and without complicating the formalism. On the contrary, downfolding is now more efficient and the formalism is simpler and closer to that of screened multiple-scattering theory. The NMTO method allows one to solve the single-electron Schroedinger equation for a MT-potential -in which the MT-wells may overlap- using basis sets which are arbitrarily minimal. The substantial increase in accuracy over the LMTO-ASA method is achieved by substitution of the energy-dependent partial waves by so-called kinked partial waves, which have tails attached to them, and by using these kinked partial waves at N+1 arbitrary energies to construct the set of NMTOs. For N=1 and the two energies chosen infinitesimally close, the NMTOs are simply the 3rd-generation LMTOs. Increasing N, widens the energy window, inside which accurate results are obtained, and increases the range of the orbitals, but it does not increase the size of the basis set and therefore does not change the number of bands obtained. The price for reducing the size of the basis set through downfolding, is a reduction in the number of bands accounted for and -unless N is increased- a narrowing of the energy window inside which these bands are accurate. A method for obtaining orthonormal NMTO sets is given and several applications are presented.Comment: 85 pages, Latex2e, Springer style, to be published in: Lecture notes in Physics, edited by H. Dreysse, (Springer Verlag

    Projected Newton Method for noise constrained Tikhonov regularization

    Full text link
    Tikhonov regularization is a popular approach to obtain a meaningful solution for ill-conditioned linear least squares problems. A relatively simple way of choosing a good regularization parameter is given by Morozov's discrepancy principle. However, most approaches require the solution of the Tikhonov problem for many different values of the regularization parameter, which is computationally demanding for large scale problems. We propose a new and efficient algorithm which simultaneously solves the Tikhonov problem and finds the corresponding regularization parameter such that the discrepancy principle is satisfied. We achieve this by formulating the problem as a nonlinear system of equations and solving this system using a line search method. We obtain a good search direction by projecting the problem onto a low dimensional Krylov subspace and computing the Newton direction for the projected problem. This projected Newton direction, which is significantly less computationally expensive to calculate than the true Newton direction, is then combined with a backtracking line search to obtain a globally convergent algorithm, which we refer to as the Projected Newton method. We prove convergence of the algorithm and illustrate the improved performance over current state-of-the-art solvers with some numerical experiments

    Efficient numerical diagonalization of hermitian 3x3 matrices

    Full text link
    A very common problem in science is the numerical diagonalization of symmetric or hermitian 3x3 matrices. Since standard "black box" packages may be too inefficient if the number of matrices is large, we study several alternatives. We consider optimized implementations of the Jacobi, QL, and Cuppen algorithms and compare them with an analytical method relying on Cardano's formula for the eigenvalues and on vector cross products for the eigenvectors. Jacobi is the most accurate, but also the slowest method, while QL and Cuppen are good general purpose algorithms. The analytical algorithm outperforms the others by more than a factor of 2, but becomes inaccurate or may even fail completely if the matrix entries differ greatly in magnitude. This can mostly be circumvented by using a hybrid method, which falls back to QL if conditions are such that the analytical calculation might become too inaccurate. For all algorithms, we give an overview of the underlying mathematical ideas, and present detailed benchmark results. C and Fortran implementations of our code are available for download from http://www.mpi-hd.mpg.de/~globes/3x3/ .Comment: 13 pages, no figures, new hybrid algorithm added, matches published version, typo in Eq. (39) corrected; software library available at http://www.mpi-hd.mpg.de/~globes/3x3
    corecore