751 research outputs found

    A Novel ILP Framework for Summarizing Content with High Lexical Variety

    Full text link
    Summarizing content contributed by individuals can be challenging, because people make different lexical choices even when describing the same events. However, there remains a significant need to summarize such content. Examples include the student responses to post-class reflective questions, product reviews, and news articles published by different news agencies related to the same events. High lexical diversity of these documents hinders the system's ability to effectively identify salient content and reduce summary redundancy. In this paper, we overcome this issue by introducing an integer linear programming-based summarization framework. It incorporates a low-rank approximation to the sentence-word co-occurrence matrix to intrinsically group semantically-similar lexical items. We conduct extensive experiments on datasets of student responses, product reviews, and news documents. Our approach compares favorably to a number of extractive baselines as well as a neural abstractive summarization system. The paper finally sheds light on when and why the proposed framework is effective at summarizing content with high lexical variety.Comment: Accepted for publication in the journal of Natural Language Engineering, 201

    Enumeration of Extractive Oracle Summaries

    Full text link
    To analyze the limitations and the future directions of the extractive summarization paradigm, this paper proposes an Integer Linear Programming (ILP) formulation to obtain extractive oracle summaries in terms of ROUGE-N. We also propose an algorithm that enumerates all of the oracle summaries for a set of reference summaries to exploit F-measures that evaluate which system summaries contain how many sentences that are extracted as an oracle summary. Our experimental results obtained from Document Understanding Conference (DUC) corpora demonstrated the following: (1) room still exists to improve the performance of extractive summarization; (2) the F-measures derived from the enumerated oracle summaries have significantly stronger correlations with human judgment than those derived from single oracle summaries.Comment: 12 page

    Using tweets to help sentence compression for news highlights generation

    Get PDF
    We explore using relevant tweets of a given news article to help sentence com-pression for generating compressive news highlights. We extend an unsupervised dependency-tree based sentence compres-sion approach by incorporating tweet in-formation to weight the tree edge in terms of informativeness and syntactic impor-tance. The experimental results on a pub-lic corpus that contains both news arti-cles and relevant tweets show that our pro-posed tweets guided sentence compres-sion method can improve the summariza-tion performance significantly compared to the baseline generic sentence compres-sion method.

    Algorithms to Explore the Structure and Evolution of Biological Networks

    Get PDF
    High-throughput experimental protocols have revealed thousands of relationships amongst genes and proteins under various conditions. These putative associations are being aggressively mined to decipher the structural and functional architecture of the cell. One useful tool for exploring this data has been computational network analysis. In this thesis, we propose a collection of novel algorithms to explore the structure and evolution of large, noisy, and sparsely annotated biological networks. We first introduce two information-theoretic algorithms to extract interesting patterns and modules embedded in large graphs. The first, graph summarization, uses the minimum description length principle to find compressible parts of the graph. The second, VI-Cut, uses the variation of information to non-parametrically find groups of topologically cohesive and similarly annotated nodes in the network. We show that both algorithms find structure in biological data that is consistent with known biological processes, protein complexes, genetic diseases, and operational taxonomic units. We also propose several algorithms to systematically generate an ensemble of near-optimal network clusterings and show how these multiple views can be used together to identify clustering dynamics that any single solution approach would miss. To facilitate the study of ancient networks, we introduce a framework called ``network archaeology'') for reconstructing the node-by-node and edge-by-edge arrival history of a network. Starting with a present-day network, we apply a probabilistic growth model backwards in time to find high-likelihood previous states of the graph. This allows us to explore how interactions and modules may have evolved over time. In experiments with real-world social and biological networks, we find that our algorithms can recover significant features of ancestral networks that have long since disappeared. Our work is motivated by the need to understand large and complex biological systems that are being revealed to us by imperfect data. As data continues to pour in, we believe that computational network analysis will continue to be an essential tool towards this end
    • …
    corecore