6,291 research outputs found

    Fast Inner Product Computation on Short Buses

    Get PDF
    We propose a VLSI inner product processor architecture involving broadcasting only over short buses (containing less than 64 switches). The architecture leads to an efficient algorithm for the inner product computation. Specifically, it takes 13 broadcasts, each over less than 64 switches, plus 2 carry-save additions (tcsa) and 2 carry-lookahead additions (tcla) to compute the inner product of two arrays of N = 29 elements, each consisting of m = 64 bits. Using the same order of VLSI area, our algorithm runs faster than the best known fast inner product algorithm of Smith and Torng [ Design of a fast inner product processor, Proceedings of IEEE 7th Symposium on Computer Arithmetic (1985)], which takes about 28 tcsa + tcla for the computation

    Chance-Constrained Outage Scheduling using a Machine Learning Proxy

    Full text link
    Outage scheduling aims at defining, over a horizon of several months to years, when different components needing maintenance should be taken out of operation. Its objective is to minimize operation-cost expectation while satisfying reliability-related constraints. We propose a distributed scenario-based chance-constrained optimization formulation for this problem. To tackle tractability issues arising in large networks, we use machine learning to build a proxy for predicting outcomes of power system operation processes in this context. On the IEEE-RTS79 and IEEE-RTS96 networks, our solution obtains cheaper and more reliable plans than other candidates

    Real-Time Thevenin Impedance Computation

    Get PDF
    corecore