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Fast Inner Product Computation on Short Buses

R. LINa and S. OLARIUb,*

aDepartment of Computer Science, SUNY at Geneseo, Geneseo, NY 14454, USA; bDepartment of Computer Science, Old Dominion University, Norfolk,
VA 23529, USA

(Received 3 December 2000; Revised 12 April 2001)

We propose a VLSI inner product processor architecture involving broadcasting only over short buses
(containing less than 64 switches). The architecture leads to an efficient algorithm for the inner product
computation. Specifically, it takes 13 broadcasts, each over less than 64 switches, plus 2 carry-save
additions (tcsa) and 2 carry-lookahead additions (tcla) to compute the inner product of two arrays of
N ¼ 29 elements, each consisting of m ¼ 64 bits. Using the same order of VLSI area, our algorithm
runs faster than the best known fast inner product algorithm of Smith and Torng [“Design of a fast inner
product processor,” Proceedings of IEEE 7th Symposium on Computer Arithmetic (1985)], which takes
about 28 tcsa þ tcla for the computation.

Keywords: Application specific architectures; Computer arithmetic; Inner product processor;
Reconfigurable bus system; Shift switching

INTRODUCTION

Processor arrays with buses have become the focus of

much interest due to recent advances in VLSI and fiber

optics[3]. Architectures featuring a reconfigurable bus

system (REBS) including the reconfigurable mesh [13],

and the polymorphic-torus [5] allow the configuration of

the corresponding bus system to be changed dynamically

under program control, to suit communication needs.

These architectures have been extensively investigated and

many efficient algorithms have been proposed. Examples

include several fundamental algorithms on sorting, tree

search, image processing, computational geometry, vision,

and graph theory [1,4–6,10–13,15,16,18,20,23].

Recently the authors have proposed a new way of

looking at bus systems. Our idea applies to both static and

REBSs and involves enhancing traditional buses by the

addition of a new feature that we call shift switching [7–

9]. Just as in the reconfigurable architectures, our shift

switching mechanism features local switches within each

processing element (PE). However, the novelty of our idea

is that we adopt a new class of switch states, which are

manipulated by each processor. Specifically, we enable

switches to rotate connections between lines (or tracks) of

a bus. We show that this is a simple and powerful approach

to improve the flexibility of a bus system.

The reconfigurable bus model did not gain wide

acceptance because of its basic assumption: the time

needed to transmit a signal along any bus is constant,

regardless of the number of switches that the signal

propagates through. According to traditional semiconduc-

tor technology, it is true that the transmission rate of a

single switch has a lower bound, however, recent VLSI

implementations have demonstrated that the rate is indeed

quite small in terms of machine instruction cycles

[17,21,22]. For example, broadcasting on a 1024

processor YUPPIE chip [11] requires only 16 instruction

cycles (or 1 cycle for 64 processors). It takes even shorter

delay on another chip called GCN, which adopts pre-

charged circuits [14,19]. This confirms the feasibility and

potential benefits of the models. What makes the models

particularly attractive is the combination of (1) the lack of

diameter concern due to the use of bus structures, (2) the

multiple interconnection schemes due to the use of program

control switches, (3) the high possibility for partial-optical or

future all-optical implementations [1], thus, eventually

achieving the O(1) time broadcast in general.

The purpose of this paper is to propose a VLSI inner

product processor involving only broadcasting over short

(to be defined later) buses. The architecture leads to an

efficient algorithm for the inner product computation.

Specifically, it takes 12 broadcasts, each over 64 switches,

plus 2 carray-save additions (tcsa) and 2 carry-lookahead

additions (tcla) to compute the inner product of two arrays

of N ¼ 29 elements, each consisting of m ¼ 64 bits. Using

the same order of VLSI area, our algorithm runs likely
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faster than the best known fast inner product algorithm of

Smith and Torng [18], which takes about 28tcsa þ tcla for

the computation.

The paper is organized as follows: th second section

gives a brief review on the concept of REBS with shift

switching, which has been introduced in [8–10]. The

third, fourth and fifth sections present the shift switching

multiplier, shift switching counter, and the inner product

processor architecture, respectively. The sixth section

concludes the paper.

SHIFT SWITCHES

To make the paper self-contained, we shall review the

basic features of a REBS, and the concept of shift

switching which has been introduced in Ref. [5] For

illustration purposes, consider the case of a reconfigurable

mesh and refer to Fig. 1(a). A reconfigurable mesh

consists of an N £ N VLSI array of processors overlaid

with a REBS. Every processor features four ports denoted

by N, S, E and W. Local connections between these ports

can be established under program control creating a

powerful bus system that changes dynamically to

accommodate various computational needs. We assume

a single instruction stream: in each time unit, the same

instruction is broadcast to all processors, which execute it

and wait for the next instruction. Each instruction can

consist of setting local connections (we refer to these as

switches ), performing an arithmetic or Boolean operation,

broadcasting a value on a bus, or receiving a value from a

specified bus. The regular structure of the reconfigurable

mesh makes it suitable for VLSI implementation. In

accord with other workers [1,4,8,9,13], we assume that

broadcast along a bus of N switches takes d(N ) time.

Recent experiments with the YUPPIE system [8] seem to

indicate that dðNÞ ¼ Oð1Þ is a reasonable working

hypothesis. In particular, experimental results seem to

indicate that wherever the number of switches (or

processors) involved is less than 106, the broadcasting

delay is a small constant, or O(1). For our purposes, a

switch (see Fig. 1(b)) can be seen as an array of m identical

switching elements, which are under synchronous control

of a processor. Every switching element involves a

number of lines of buses. Several different switch states

can be obtained by instructing a switch to set line contacts

in different ways. For simplicity, the switches of a REBS

are referred to as simple switches as opposed to shift

switches introduced below.

A new type of switch (see Fig. 2), which we call a shift

switch can be constructed from simple switches with

changes only in internal wiring which guarantees that shift

(or rotation) connections between the incoming and

outgoing bus lines can be dynamically constructed. The

notation Sm:d stands for a switch featuring m switching

elements, with the state changes controlled by d bits.

Equipped with an Sm:d switch a processor can shift one (or

zero) bit of an incoming m-bit signal. We also assume the

following:

(1) Each switch has a d-bit buffer called state buffer: if

the contents of this buffer is k, then the processor can

trigger its switch to state k;

(2) A switch has a special element, called a rotation

element, to output the rotation bit;

(3) A processor can read the rotation bit and write the

state-buffer.

Figure 2 illustrates an S3:2 switch involving three

switching elements and 4 states denoted by state 0, or I0

(shift 0), state 1, or I1 (shift 1), state 2, or H (horizontal),

and state 3, or V (vertical). For example, when a processor

sets its switch to state

. I0, the following contacts are established: w (west) and

e (east) in every switching element, as well as c (rotate-

bit) and g (ground, which provides a 0 signal);

. I1, the following contacts are established: w and i in

every switching element, as well as a, b and c in the

rotation element (it will soon be clear that c is not the

same as but similar to a carry bit of an addition).

(a) (b)

FIGURE 1 Reconfigurable bus system. (a) 3 £ 3 reconfigurable mesh, (b) a switch and its four states m ¼ 3:
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It is easy to confirm that in state I0 (I1) the incoming

signal is shifted 0 (1) lines. For the reader’s convenience,

two additional switches, S4:1 and S2:1 (also called a basic

shift switch ) are featured in Fig. 3: both have only two

ports W and E and two states I0 or I1

The algorithm Sum_N_Bits which computes the sum

of N binary numbers on a bus of N Sm:1 switches, which is

also referred to as a bus with cycle of N, can be simply

described as:

Assuming the state buffer of each switch has been

loaded with the corresponding binary number, we iterate

k ¼ ½log N=log m� steps for the following five operations

(see Fig. 4):

(1) Set up switches according to the values in their state

buffers,

(2) Broadcast an m-bit signal

m

00· · ·01M
zfflfflfflfflfflffl}|fflfflfflfflfflffl{

; that we call

shifting signal, from the west end of the bus,

(3) Encode the output signal in the east end of the bus,

and

(4) Shift the result register log m bits to the right, save the

Encoded value to its first log m bits,

(5) Move the notation bit of each switch to its state

buffer.

The sum of the N input bits, is in the result register.

It is easy to verify the correctness of the operation and

time complexity which are given below

Theorem 1 of Ref. [8]): On a linear array of N shift

switches (or PEs ) with bus width m, in ðlog N=log mÞ

steps, we can compute the sum of N bits, using an encoder,

a shift register and no adder.

This result implies two important improvements for a

REBS: First, the time for the fundamental parallel

operation, sum of N bits, is reduced by a factor of

(log m ). For many applications m is at least log N, thus,

Log N=log log N time is enough for the computation.

When m ¼ N 1=k; the approach achieves a constant time (k

steps) summation of N bits. In particularly, some small k,

for example, 1 to 4 are interested in shift switching bus

designs. Second, no adder is now required within each PE,

and no significant amount of additional hardware is

needed for the construction of such a PE (switch) array.

Note that Based on YUPPIE chip [11] and GCN chip

(which adopts pre-charged circuits) experiments, it is

reasonable to say that when N is smaller enough (say 64 or

less) each broadcast can be done in one or little more than

one instruction cycle (say 30–60 ns.). In “SS counter and

SAS unit” section, we introduce an efficient design of shift

switching buses for summation of NðN ¼ 29Þ bits (called

SS counter).

SHIFT SWITCHING MULTIPLIER

In this section, we introduce the architecture of a novel

multiplier, that we call SS multiplier, based on shift

switching mechanism. It is composed of m specific switch

units, denoted as U(m, 2), and an accumulator (or a CSA

plus a CLA, i.e. carry save adder and carry lookahead

adder). A U(m, 2) is a union of m basic switches of S2:1

(Fig. 5). The configuration of m U(m, 2) units (Fig. 6)

ensures the multiplier can receive the bit-product matrix

(including sign bits) from 2ðmþ 1Þ input lines for two m-

bit sign-magnitude numbers a and b. We assume that the

binary representations for a and b are aðmÞaðm 2

1Þ. . .að0Þ; and bðmÞbðm 2 1Þ. . .bð0Þ; respectively, and

a(m ) and b(m ) are sign bits, s ¼ aðmÞ%bðmÞ where %

denotes modulo 2 addition, a(k ) and b(k ) (for

0 # k # m 2 1) are binary digits. Figure 6 indicates that

the j-th 1-bit state-buffer of k-th U(m, 2) receives aðjÞ·bðkÞ;

FIGURE 2 Shift switch S3:2 and its four states. FIGURE 3 Shift switches Sm:1 (m ¼ 2 and 4) with two ports.

INNER PRODUCT PROCESSOR 339



ð0 # j; k # m 2 1Þ; thus the data in the state buffers of the

SS multiplier is the bit-product matrix of a and b. Each of

2m 2 1 vertical 2-line buses (the maximum bus cycle is

m ) sums bits of the same magnitude (by applying theorem

1) in log m=log 2 ¼ log m steps of broadcast. At the

beginning of each step, all switches turn to new states

simultaneously as dictated by the values in the state-

buffers. Each rotation bit has a connection to the state-

buffer of the same switch, thus the bit can be loaded into

the state-buffer in the following clock cycle. j-th bus

generates a single bit output to the j-th bit of the shifter in

each step, the shifter (shifting 1 bit) and the accumulator

(CSA), correctly concatenates and accumulates the 1-bit

outputs of all vertical 2-line buses respectively, the final

two numbers are added by a CLA. The sign bit s is

generated in parallel. The product: d ¼ ja·bj and the sign

bit s are obtained in log m=log 2 ¼ log m broadcasts plus a

CLA addition (the CSA additions and broadcasts are

executed in parallel). Compared with well-known add-

and-shift multiplication scheme, and other types of

multiplier, SS multiplier is competitive, because it

requires only log m short bus (with a cycle of m )

broadcasts (plus a CSA addition and a CLA addition),

using m 2 basic switches plus a CSA adder and a CLA

adder of 2m bits. However, the proposed SS multiplier is

not a critical hardware component for our inner product

processor. Clearly, any better multipliers can be used to

replace the SS multipliers for the computation. The

purpose of introducing SS multiplier here is for the further

illustration that a fast inner product processor can be

constructed solely using short shift switching buses.

SS COUNTER AND SAS UNIT

To sum N bits (or to count number of 1’s in N bits) many

parallel counter are available. However, they are either too

expensive (requiring large amount of adder bits) or are too

slow to cooperate with our processor. For our purpose, we

can also use a shift switching bus of width N 1/2 and cycle N,

and apply algorithmSum_N_Bits on the bus to obtain the

result in log N=ðlog N 1=2Þ ¼ 2 broadcasts. However, for

the computation, each broadcast signal must propagate

through N switches. For large N (for example, N ¼ 29), this

may take unacceptable many instruction cycles (say, each

of 20 ns) under the current VLSI technology, thus is not

practical. Now we introduce a new efficient shift switching

counter, that we call SS counter. An SS counter inputs N

bits and generates four results: R1
i ; R

2
i ;Q

1
i and Q2

i in 4 steps

of short broadcast, with the count of the N bits equal to

R1
i þ R2

i *W þ Q1
i *W þ Q2

i *W 2: However, these results

(in successive three steps: Step 2, 3 and 4) are not weighted

and added to obtain the sum, instead, they are directly

loaded into another device, called short array summation

unit (SAS unit for short), which is capable of summing all

these results in parallel with SS counter’s broadcasting,

thus greatly improving the time performance of the whole

inner product computation. We leave the detail description

of an SAS unit in the next section. For simplicity, we

restrict our discussion of SS counter for input N ¼ 29; in

general, for N $ 29; the technique is likely to result in the

same significant gain in broadcasting time and hardware

cost. To explain the idea we first illustrate a simplified

example below.

Let N ¼ 17; in stead of using a single bus of width,

W ¼ 5 ¼
ffiffiffiffiffi
17
p

; and cycle 17, we use three levels of short

buses of width, W ¼ 4: Level 1 consists of 4 buses of

FIGURE 4 Summing B ¼ ð1; 1; 0; 1; 1; 0; 1Þ (the ends of operation 4 for k ¼ 1; 2 and 3 are shown).

FIGURE 5 Linear switch unit: U(m, 2) for m ¼ 3:
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cycles, 5, 4, 4, 4, respectively. The state buffers of level 1

buses receive 17 input bits. Both level 2 and 3 consist of a

single short bus, with cycle 63 and cycle 57, respectively.

Also a limited number (8, to be precise) of OR gates are

used to connect the first two level buses. To compute the

sum of 17 input bits, we use four steps as follows.

In Step 1 (Fig. 7(a)), each bus of level 1 broadcasts a 4-

bit shifting signal 0001. Three output signal bits (except

the 0-th bit) from the east end of each bus go to the state

buffers of level 2. Each rotation bit goes back to the state

buffer of its own switch; In Step 2 (Fig. 7(b)), buses of

levels 1 and 2 trigger the switches and then broadcast

shifting signals. Three output signal bits from the east end

of each bus in level 1 go to the state buffers of level 2. The

output signal bits of level 2 is encoded into a binary

number, denoted by R1
i (to be consistent with the notations

used in next section, we add subscript i here to mean the

computation is on i-th SS counter). Each rotation bit of

level 2 goes to the corresponding state buffer of level 3. In

Step 3 (Fig. 7(c)), both buses of level 2 and level 3 trigger

switches and broadcast the shifting signal. The output

signal bits of level 2 is encoded into a binary number,

denoted by R2
i ; the output signal bits of level 3 is encoded

into a binary number, denoted by Q1
i : Each rotation bit of

level 2 again goes to the corresponding state buffer of

level 3. In Step 4, only level 3 triggers switches and

broadcasts the shifting signal. The output signal bits are

encoded, denoted by Q2
i : It is easy to verify that

Count of N input bits ¼ R1
i þ R2

i £ W þ Q1
i £ W þ Q2

i

£ W 2: ðAÞ

Since the size of the SS counter shown in the above

example is too small, it does not reduce the time for the

computation. However, if we apply the approach, to

construct an SS counter for N ¼ 29; we can have

significant reductions on both running time and hardware

cost in contrast with the design of using a bus of width

N 1/2 and cycle N. The SS counter for N ¼ 29 is the same

as shown in the example in structure, but has different

component sizes as described below. In level 1 of the SS

counter, we use 9 bus segments of width 8, all having a

cycle of 57 except one which has cycle 56, The facts,

57 £ 8þ 56 ¼ 512 and 57 , 82 ensures that level 1 needs

only two broadcasts. In level 2, we use a bus of width 8

and cycle 63. In level 3, we use a bus of width 8 and cycle

56. Similarly, both level 2 and 3 need only two broadcasts,

thus the total number of broadcasts is 4 (due to the

overlaps of the operations as shown in the example). It is

easy to verify the following summary:

(1) It requires four steps of broadcasts, over 57, 63, 63,

56 switches, respectively (or broadcasting over total

of 239 switching elements).

(2) It requires 29 £ 9þ 63 £ 9þ 56 £ 9 ¼ 5664 switch-

ing elements (including rotation elements), plus total

54 OR gates and two 8-to-3 encoder, which means

that SS counter requires 11 switching elements and

about 0.1 OR gate per bit.

(3) Level 2 and 3 have only 8ð63þ 57Þ switching

elements in total, it turns out that a VLSI layout of

4 £ 512 will fit these two levels, thus the VLSI area

of a SS counter is ð8þ 4ÞN £ a2; for N ¼ 29; assume

a switching element has area a 2.

In contrast with the shift switching bus of width N 1/2

and cycle N, SS counter requires significantly less amount

of time, by a factor of ð2 £ 29Þ=239 ¼ 4:3; and less VSLI

area (by a factor of 2) and less switching elements

FIGURE 6 The shift switching multiplier with sign-magnitude input a and b of m ¼ 3 bits. (a) Step 1, (b) Step 2, (c) Step 3, (d) Step 4.
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(a)

(b)

(c)
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(N 1=2 þ 1 ¼ 25 switching elements per bit vs. 11 switch-

ing elements per bit).

THE PROCESSOR ARCHITECTURE AND INNER

PRODUCT COMPUTATION

The overall inner product processor architecture consists of

N SS multipliers, 2m SS counters (each with N input bits) and

an SAS unit. In the following, we describe how the inner

product can be computed on our proposed architecture.

Let input arrays: A ¼ ðaN21. . .aj. . .a0Þ; B ¼

ðbN21. . .bj. . .b0Þ; and A·B ¼
PN21

j¼0 dj; here dj ¼ jaj·bjj:
We compute each dj and sign bit sj (for 0 # j # N 2 1)

using an SS multiplier. The products of all SS multiplier

are divided into two groups, the positive and the negative,

with
Pj¼N21

j¼0;sj¼0dj representing the positive, and
Pj¼N21

j¼0;sj¼0dj

representing the negative, thus

A·B ¼
Xj¼N21

j¼0;sj¼0

dj þ
Xj¼N21

j¼0;sj¼0

dj

FIGURE 7 Summation of 16 bits (all 1 s) on a SS counter (SS counter i ¼ 0 is shown). The outputs of each step are shown in bold. The counter’s
outputs are R1

i ¼ 01 (step 2); R2
i ¼ 00; Q1

i ¼ 00 (step 3); Q2
i ¼ 01 (step 4). The sum ¼ R1

i þ R2
i £ 4þ Q1

i £ 4þQ2
i £ 42 ¼ 1þ 0 £ 4þ 0 £ 4þ 1 £

42 ¼ 17:

(d)

FIGURE 8 The inner product processor for the computation of A·B. (a) The block diagram of SAS unit. (b) SAS bus 7.
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Replacing dj by its binary representation, we have

A·B ¼
Xj¼N21

j¼0;sj¼0

X2m21

i¼0

2idjðiÞ þ
Xj¼N21

j¼0;sj¼1

X2m21

i¼0

2idjðiÞ

¼
X2m21

i¼0

2i
Xj¼N21

j¼0;sj¼0

djðiÞ þ
X2m21

i¼0

2i
Xj¼N21

j¼0;sj¼0

djðiÞ

The positive and negative products are output from

SS multipliers separately. The negative numbers are

output 2 steps after the positive numbers are output to

the SS counters. The i-th bit ð0 # i # 2mÞ of j-th

product (in j-th multiplier) goes to the j-th input (state

buffer) of i-th SS counter. That is, i-th SS counter

counts i-th bits of all N products. It takes 6 steps for

each of 2m SS counters to complete the computation

with eight results (R1
i ; R2

i ; Q1
i ; and Q2

i ; twice each)

output to the SAS unit. We denote 4 results for positive

products by R1
i ðþÞ; R2

i ðþÞ; Q1
i ðþÞ and Q2

i ðþÞ; and

denote the others for negative products by R1
i ð2Þ R2

i ð2Þ

FIGURE 9 SAS (Short Array Summation) unit (for N ¼ 29; W ¼ 8), where each SAS bus line (vertical bus) contains no more than 3 switching
elements.

(a)

(b)
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and Q1
i ð2Þ Q2

i ð2Þ: We spell out the 6 steps as follows:

(refer to the example), in Step 1 level 1 receives all

positive products, and only level 1 buses broadcast; in

Step 2, level 1 and 2 broadcast, only level 2 outputs

R1
i ðþÞ; in Step 3, level 1 receives all negative products,

and all three levels broadcast, while level 2 outputs

R2
i ðþÞ; level 3 outputs Q1

i ðþÞ; in Step 4, all three levels

broadcast, while level 2 outputs R1
i ð2Þ and level 3

outputs Q2
i ðþÞ; in Step 5 level 2 and 3 broadcast, while

level 2 output R2
i ð2Þ; level 3 output Q1

i ð2Þ; in Step 6,

only level 3 broadcasts and outputs Q2
i ðþÞ (Fig. 8).

Now by (A), we have

Xj¼N21

j¼0;sj¼0

djðiÞ ¼ R1
i ðþÞ þ R2

i ðþÞ £ W þ Q1
i ðþÞ £ W

þ Q2
i ðþÞ £ W 2

and

Xj¼N21

j¼0;sj¼0

djðiÞ ¼ R1
i ð2Þ þ R2

i ð2Þ £ W þ Q1
i ð2Þ £ W

þ Q2
i ð2Þ £ W 2

The outputs from SS counters are directly loaded into

(the state buffers of) SAS unit. Noticed that each of these

eight numbers has log W ¼ 3 (W ¼ 8 for N ¼ 29) bits, the

configuration of SAS unit ensures the output of i-th SS

counter is shifted to the magnitude of 2i ð0 # I #

2m 2 1Þ: The SAS unit (Fig. 9) has eight short shift

switching buses (SAS buses), four of them receive

positive outputs, the other four receive negative outputs

each having 2m Uðlog W ¼ 3; 2Þ switch units. It is clear

that each SAS bus has cycle 3, i.e. each vertical bus line

contains no more than 3 switching elements. By theorem

1, it takes 2 broadcasts, each over 3 switches, to finish the

summation of 2m array elements. The result from of each

SAS bus are shifted to the corresponding magnitudes as

follows: R1
i ðþÞ and R1

i ð2Þ are not shifted; R2
i ðþÞ; R2

i ð2Þ;
Q1

i ðþÞ and Q1
i ð2Þ; are shifted to the magnitude of W (i.e.

log W ¼ 3 0 s are added); Q2
i ðþÞ and Q2

i ð2Þ are shifted to

the magnitude of W 2 (i.e. 2log W ¼ 6 0 s are added).

These eight weighted numbers are output successively and

are accumulated in a CSA (three inputs two outputs).

Since every two very short broadcasts of SAS unit takes

less time than one broadcast of SS counters over about 63

switches, after Q2
i ð2Þ is output, it takes only two more

very short broadcasts plus one CSA addition and one CLA

addition we can obtain the final result, A·B, thus

A·B ¼
X2m21

i¼0

2iR1
i ðþÞ þ

X2m21

i¼0

2iR2
i ðþÞ £ W þ

X2m21

i¼0

2iQ1
i ðþÞ

£ W þ
X2m21

i¼0

2iR2
i ðþÞ £ W 2 2

X2m21

i¼0

2iR1
i ð2Þ

2
X2m21

i¼0

2iR2
i ð2Þ £ W 2

X2m21

i¼0

2iQ1
i ð2Þ £ W

2
X2m21

i¼0

2iR2
i ð2Þ £ W 2

is computed.

We summarize the proposed inner product processor of

input size, N ¼ 29; as follows:

Time: ðlog mÞtbðmÞ þ tcsa þ tcla {by SS multipliersÞ þ

4tbð63Þ þ 2tbð57Þ {by SS countersÞ þ 2tbð3Þ {by SAS unit,

total 8 steps, but 6 steps are executed in parallel to the 6

steps of SS counter} þ tcsa þ tcla {the final additions}

Here tb(x ) means broadcast time on a bus of cycle x; tcsa

means the time for one carry-save addition, tcla means the

time for one carry-lookahead addition.

If 4tbð63Þ þ 2tbð57Þ þ 2tbð3Þ is counted as 7tb(64), the

total time is

ðlog mÞtbðmÞ þ 7tbð64Þ þ 2ðtcsa þ tclaÞ:

For 64-bit data ðm ¼ 64Þ; the time is 13tbð64Þ þ 2ðtcsa þ

tclaÞ: For 16-bit data, the time is 7tbð64Þ þ 4tbð16Þ þ

2ðtcsa þ tclaÞ:
Our processor likely works faster than the well-known

fast inner product processor of Smith and Torng [18],

which has computation time of 2ðlog N þ log m 2 1Þtcsa þ

tcla: For N ¼ 29; m ¼ 64; it is 28tcsa þ tcla: For N ¼ 29;
m ¼ 16; it is 24tcsa þ tcla:

Hardware (for N ¼ 29)

number of switching elements:
3Nm 2 {N SS multipliers of m 2 basic shift

switches, each having 3 switching elements} þ 2m

ðNð8þ 1Þ þ 63 £ ð8þ 1Þ þ 57 £ ð8þ 1ÞÞ {2m SS

counters of 3 levels, each having 9 switching

elements including rotation bits} þ 2m

(3 £ 3) £ 8 {SASunit} _e3Nm 2 þ 22mN þ 144m

number of adder bits:

N £ 2m £ 2{N SS multipliers} þ 8 £ (2m þ 3) £

2 ¼ 4Nm þ 16m þ 24

Our processor likely has a less hardware elements than

that of Smith and Torng’s processor, which uses Nm2 þ

2Nmþ 2m log N þ m log m 2 log N 2 3m carry-propa-

gate adder bits. This means roughly that we use every 4

switching elements, they use one full adder bit, which

likely costs more.

VLSI area: Assume that a switching element has area

of a 2, an adder bit has an area of b 2 and a wire has width

of l. By result in the summary (3) of “SS counter and SAS
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unit” section, each SS counter has a area of length of N £ a

and width of 12 £ a, now the total 2m SS counter require

an area (vertical 2m data lines for each of N input are

included):

A1 ¼ Nm £ 2m{N SS multipliers}þ 2m £ 12a £ ðN £ a

þ N £ 2m £ lÞ

¼ 24Nma2 þ 48Nm2 £ a £ l

It is reasonable to have the following rough estimate:

l ¼ 1; a ¼ 5; b ¼ 25; then (for N ¼ 29)

A1 ¼ N £ ð24 £ 25mþ 48 £ 5 £ m2Þ ¼ 120ð5þ 2mÞNm:

The area of Smith and Torng’s processor [18] is

A2 ¼ N £ m £ ðlog N þ log mÞb2 ¼ 625ð9þ log mÞNm:

For m ¼ 16

A1 ¼ 4440; A2 ¼ 8125m; i:e:A2 ¼ 1:8A1

For m ¼ 64; A1 ¼ 15; 840m; A2 ¼ 8125; i.e. A1 ¼

1:9A2:
Thus A1 and A2 are of the same order of magnitude.

CONCLUDING REMARK

Recently the authors have proposed a new way of

looking at bus systems. Our idea applies to both static

and REBSs and involves enhancing traditional buses by

the addition of a new feature that we call shift

switching [7–9]. It turns out that this is a simple and

powerful approach to improve the efficiency and

flexibility of a bus system. In this paper, we adopt

and modify the switching mechanism to obtain a novel

VLSI inner product processor architecture involving

broadcasting only over short buses (containing no more

than 64 switches). The architecture leads to an efficient

algorithm for the inner product computation. Specifi-

cally, it takes 13 broadcasts, each over 64 switches, plus

2 carry-save additions (tcsa) and 2 carry-lookahead

additions (tcla) to compute the inner product of two

arrays of N ¼ 29 elements, each consisting of m ¼ 64

bits. And it takes only 11 broadcasts, with 7 of them

over 64 switches, and 4 over 16 switches, plus 2ðtcsa þ

tclaÞ to compute the inner product for 16-bit data. Using

the same order of VLSI area, our algorithm runs faster

than the best-known fast inner product algorithm of

Smith and Torng [18], which takes about 28tcsa þ tcla

and 24tcsa þ tcla to compute the corresponding inner

products for 64-bit and 16-bit input data, respectively.
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