811 research outputs found

    Fast smoothing in switching approximations of non-linear and non-Gaussian models

    Get PDF
    International audienceStatistical smoothing in general non-linear non-Gaussian systems is a challenging problem. A new smoothing method based on approximating the original system by a recent switching model has been introduced. Such switching model allows fast and optimal smoothing. The new algorithm is validated through an application on stochastic volatility and dynamic beta models. Simulation experiments indicate its remarkable performances and low processing cost. In practice, the proposed approach can overcome the limitations of particle smoothing methods and may apply where their usage is discarded

    The History of the Quantitative Methods in Finance Conference Series. 1992-2007

    Get PDF
    This report charts the history of the Quantitative Methods in Finance (QMF) conference from its beginning in 1993 to the 15th conference in 2007. It lists alphabetically the 1037 speakers who presented at all 15 conferences and the titles of their papers.

    Efficient Gibbs Sampling for Markov Switching GARCH Models

    Full text link
    We develop efficient simulation techniques for Bayesian inference on switching GARCH models. Our contribution to existing literature is manifold. First, we discuss different multi-move sampling techniques for Markov Switching (MS) state space models with particular attention to MS-GARCH models. Our multi-move sampling strategy is based on the Forward Filtering Backward Sampling (FFBS) applied to an approximation of MS-GARCH. Another important contribution is the use of multi-point samplers, such as the Multiple-Try Metropolis (MTM) and the Multiple trial Metropolize Independent Sampler, in combination with FFBS for the MS-GARCH process. In this sense we ex- tend to the MS state space models the work of So [2006] on efficient MTM sampler for continuous state space models. Finally, we suggest to further improve the sampler efficiency by introducing the antithetic sampling of Craiu and Meng [2005] and Craiu and Lemieux [2007] within the FFBS. Our simulation experiments on MS-GARCH model show that our multi-point and multi-move strategies allow the sampler to gain efficiency when compared with single-move Gibbs sampling.Comment: 38 pages, 7 figure

    Exact likelihood computation for nonlinear DSGE models with heteroskedastic innovations

    Get PDF
    Phenomena such as the Great Moderation have increased the attention of macro-economists towards models where shock processes are not (log-)normal. This paper studies a class of discrete-time rational expectations models where the variance of exogenous innovations is subject to stochastic regime shifts. We first show that, up to a second-order approximation using perturbation methods, regime switching in the variances has an impact only on the intercept coefficients of the decision rules. We then demonstrate how to derive the exact model likelihood for the second-order approximation of the solution when there are as many shocks as observable variables. We illustrate the applicability of the proposed solution and estimation methods in the case of a small DSGE model. JEL Classification: E0, C63DSGE Models, Regime switching, second-order approximation, time-varying volatility

    Evaluating Structural Models for the U.S. Short Rate Using EMM and Particle Filters

    Get PDF
    We combine the efficient method of moments with appropriate algorithms from the optimal filtering literature to study a collection of models for the U.S. short rate. Our models include two continuous-time stochastic volatility models and two regime switching models, which provided the best fit in previous work that examined a large collection of models. The continuous-time stochastic volatility models fall into the class of nonlinear, non-Gaussian state space models for which we apply particle filtering and smoothing algorithms. Our results demonstrate the effectiveness of the particle filter for continuous-time processes. Our analysis also provides an alternative and complementary approach to the reprojection technique of Gallant and Tauchen (1998) for studying the dynamics of volatility.

    Fast exact filtering in generalized conditionally observed Markov switching models with copulas

    Get PDF
    International audienceWe deal with the problem of statistical filtering in the context of Markov switching models. For X_1^N hidden continuous process, R_1^N hidden finite Markov process, and Y_1^N observed continuous one, the problem is to sequentially estimate X_1^N and R_1^N from Y_1^N. In the classical " conditional Gaussian Linear state space model " (CGLSSM), where (R_1^N, X_1^N) is a hidden Gaussian Markov chain, fast exact filtering is not workable. Recently, " conditionally Gaussian observed Markov switching model " (CGOMSM) has been proposed, in which (R_1^N, Y_1^N) is a hidden Gaussian Markov chain instead. This model allows fast exact filtering. In this paper, using copula, we extend CGOMSM to a more general one, in which (R_1^N, Y_1^N) is a hidden Markov chain (HMC) with noise of any form and the regimes are no need to be all Gaussian, while the exact filtering is still workable. Experiments are conducted to show how the exact filtering results based on CGOMSM can be improved by the use of the new model
    corecore