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Abstract We deal with the problem of statistical filtering in the context of Markov switch-
ing models. For XN

1 hidden continuous process, RN
1 hidden finite Markov process, and YN

1

observed continuous one, the problem is to sequentially estimate XN
1 and RN

1 from YN
1 . In

the classical “conditional Gaussian Linear state space model” (CGLSSM), where (RN
1 ,X

N
1 )

is a hidden Gaussian Markov chain, fast exact filtering is not workable. Recently, “condition-
ally Gaussian observed Markov switching model” (CGOMSM) has been proposed, in which
(RN

1 ,Y
N
1 ) is a hidden Gaussian Markov chain instead. This model allows fast exact filtering.

In this paper, using copula, we extend CGOMSM to a more general one, in which (RN
1 ,Y

N
1 )

is a hidden Markov chain (HMC) with noise of any form and the regimes are no need to be
all Gaussian, while the exact filtering is still workable. Experiments are conducted to show
how the exact filtering results based on CGOMSM can be improved by the use of the new
model.

Key words Markov switching model, CGLSSM, CGOMSM, GCOMSM, Copulas, Optimal
filter, Triplet Markov chain.

1 Introduction

Consider three random processes XN
1 = (X1, . . . ,XN), RN

1 = (R1, . . . ,RN) and
YN

1 = (Y1, . . . ,YN). Each Xn, Rn, Yn takes their values in Rm, Ω = {1, . . . , K}
and Rq respectively. The problem that we deal with is to find the unobservable
(or hidden) processes (RN

1 ,X
N
1 ) from the observation YN

1 = yN
1 . In the model we

propose, we assume, as it is usually made, that both triplet (XN
1 ,R

N
1 ,Y

N
1 ) and RN

1

are Markov chains. The first markovianity then implies that the couple (XN
1 ,Y

N
1 ) is

Markovian conditionally on RN
1 . The distribution of (XN

1 ,R
N
1 ,Y

N
1 ) is defined by the

initial distribution p (x1, r1,y1) and the transitions p
(
xn+1, rn+1,yn+1 |xn, rn,yn

)
which will be taken of the form p (rn+1 |rn ) p

(
xn+1,yn+1 |rn+1

n ,xn,yn

)
consistently

with the Markovianity of RN
1 . Here (rn, rn+1) is denoted by (rn+1

n ) for short.

In the “conditionally Gaussian observed Markov switching model” (CGOMSM)
proposed in [1] and applied to general non-linear systems in [7, 8], the transitions
p
(
xn+1,yn+1 |rn+1

n ,xn,yn

)
are assumed to be Gaussian with linear regimes. The
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aim of the paper is to extend the CGOMSM, which allows exact filtering, to a more
general one in which p

(
yn+1 |rn+1

n ,yn

)
are no longer limited to be Gaussian and the

regime G (xn+1 |xn, r
n+1
n ,yn+1

n ) are no longer necessarily to be linear on the observa-
tions. The new model, called “Generalized conditionally observed Markov switching
model” (GCOMSM), benefits from the copulas, which has been widely used in statis-
tical finance for dependence description [4,11]. Copulas were firstly introduced into
hidden Markov chain (HMC) with dependent noise by [3], and importance of their
role in segmentation efficiency is shown in [5,6]. However, to our best knowledge, no
work considers them in switching state-space models. In the proposed GCOMSM,
p
(
yn+1 |rn+1

n ,yn

)
is much more flexible compare to the original CGOMSM making

use of copula. Experiments are conducted to show the interest of the new model
with comparison to the result given by traditional Gaussian linear assumptions.

The paper is organized as follows. In next Sections, we recall CGOMSM, specify
the general GCOMSM and show how fast optimal filtering and smoothing runs
in this new model. Experiments are displayed and analyzed in the third Section.
Finally, the conclusion and perspectives are given in the last Section four.

2 Generalized conditionally observed Markov switching
model (GCOMSM)

Let us consider a CGOMSM, in which the Markov triplet (XN
1 ,R

N
1 ,Y

N
1 ) dis-

tribution is defined by p (x1, r1,y1) = p (r1) p (x1,y1 |r1 ) and transitions of the
form p

(
xn+1, rn+1,yn+1 |xn, rn,yn

)
= p (rn+1 |rn ) p

(
xn+1,yn+1 |xn,yn, r

n+1
n

)
. Both

p (x1,y1 |r1 ) and p
(
xn+1,yn+1 |xn,yn, r

n+1
n

)
are Gaussian. In [1], the CGOMSM is

described by linear regime:[
Xn+1

Yn+1

]
=

[
Fxx(Rn+1

n ) Fxy(Rn+1
n )

0 Fyy(Rn+1
n )

]
︸ ︷︷ ︸

F(Rn+1
n )

[
Xn

Yn

]
+

[
Un+1

Vn+1

]
, (1)

with F(Rn+1
n ) an appropriate system transition matrix, and

[
Uᵀ

n+1,V
ᵀ
n+1

]ᵀ
rep-

resents the independent Gaussian zero-mean noise which are independent from
Tn = (Xn,Rn,Yn).

We see in CGOMSM, the pair (RN
1 ,Y

N
1 ) is a Markov chain, and

p
(
xn+1,yn+1

∣∣rn+1
n ,xn,yn

)
= p

(
yn+1

∣∣rn+1
n ,yn

)
p
(
xn+1

∣∣xn, r
n+1
n ,yn+1

n

)
, (2)

which makes p
(
rN1
∣∣yN

1

)
can be computed, thus the exact filtering is feasible.

Under CGOMSM, p
(
yn+1 |rn+1

n ,yn

)
is Gaussian and G (xn+1 |xn, r

n+1
n ,yn+1

n ) is
linear on xn, yn and yn+1. However, to maintain the feasibility of exact filtering, the
Gaussian setting and linear form are not necessary conditions.
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2.1 Definition of Generalized conditionally observed Markov switching
model (GCOMSM)

The Generalized conditionally observed Markov switching model (GCOMSM)
which extends the CGOMSM considers still the triplet (XN

1 ,R
N
1 ,Y

N
1 ) a Markov

chain, defined by p (x1, r1,y1) and transition of the form

p
(
xn+1, rn+1,yn+1 |xn, rn,yn

)
=p (rn+1 |rn )

p
(
yn+1

∣∣rn+1
n ,yn

)
p
(
xn+1

∣∣xn, r
n+1
n ,yn+1

n

)
,

(3)

Unlike in CGOMSM, p
(
yn+1 |rn+1

n ,yn

)
is enriched by copula represented as:

p
(
yn+1

∣∣rn+1
n ,yn

)
=f r

n+1

(
yn+1|rn+1

n

)
cn+1

(
F l
n+1

(
yn|rn+1

n

)
, F r

n+1

(
yn+1|rn+1

n

)
|rn+1

n

)
,

(4)

where we use f l
n+1 (yn|rn+1

n ) and f r
n+1

(
yn+1|rn+1

n

)
to denote the probability density

function (PDF) of the left and right margins respectively. Similarly, F l
n+1 (yn|rn+1

n ),
F r
n+1

(
yn+1|rn+1

n

)
are their associated cumulative distribution function (CDF), while

cn+1 (·, ·|rn+1
n ) represents the density of the two-dimensional copula conditionally

on switches. The copula above then completes the two margins to form a joint
distribution p (yn+1

n |rn+1
n ) which can theoretically embrace any distribution form.

Moreover, the simple linear regime G (xn+1 |xn, r
n+1
n ,yn+1

n ) which corresponds to
p (xn+1 |xn, r

n+1
n ,yn+1

n ) in CGOMSM is extend to

xn+1 = An+1

(
rn+1
n ,yn+1

n

)
xn + Bn+1

(
rn+1
n ,yn+1

n

)
+ νn+1 (5)

in GCOMSM, in which An+1 (·) and Bn+1 (·) can be any function forms of rn, rn+1,
yn, yn+1. νn+1 ∼ N (0,Vn+1 (rn+1

n )). Integrally, they can be also written as

xn+1 ∼ N
{
An+1

(
rn+1
n ,yn+1

n

)
xn + Bn+1

(
rn+1
n ,yn+1

n

)
,Vn+1

(
rn+1
n

)}
. (6)

2.2 Fast exact filtering in GCOMSM

The Markov property of (RN
1 ,Y

N
1 ) in GCOMSM leads to p

(
xn

∣∣rn+1
n ,yn+1

1

)
=

p (xn |rn,yn
1 ). Besides, since p (xn+1 |xn, r

n+1
n ,yn+1

n ) is Gaussian defined as (6), we
have

E
[
Xn+1

∣∣xn, r
n+1
n ,yn+1

n

]
= An+1

(
rn+1
n ,yn+1

n

)
E [Xn |rn,yn

1 ] + Bn+1

(
rn+1
n ,yn+1

n

)
.
(7)

Then E
[
Xn+1

∣∣rn+1,y
n+1
1

]
is computable from E [Xn |rn,yn

1 ] with

E
[
Xn+1

∣∣rn+1,y
n+1
1

]
=
∑
rn

p
(
rn
∣∣rn+1,y

n+1
1

) {
An+1

(
rn+1
n ,yn+1

n

)
E [Xn |rn,yn

1 ]

+ Bn+1

(
rn+1
n ,yn+1

n

)} (8)
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in which p
(
rn
∣∣rn+1,y

n+1
1

)
is computable because of the Markovianity of

(
RN

1 ,Y
N
1

)
.

More precisely, we can write

p
(
rn
∣∣rn+1,y

n+1
1

)
=

p
(
rn+1
n ,yn+1

1

)∑
rn
p
(
rn+1
n ,yn+1

1

) , (9)

and p
(
rn+1
n ,yn+1

1

)
can be calculated recursively with

p
(
rn+1
n ,yn+1

1

)
=
∑
rn−1

p
(
rn−1, r

n+1
n ,yn+1

1

)
=
∑
rn−1

p
(
rnn−1,y

n
1

)
p (rn+1 |rn ) p

(
yn+1

∣∣rn+1
n ,yn

)
,

(10)

Finally, the filtering is given by

E
[
Xn+1

∣∣yn+1
1

]
=
∑
rn+1

p
(
rn+1

∣∣yn+1
1

)
E
[
Xn+1

∣∣rn+1,y
n+1
1

]
. (11)

3 Example of GCOMSM and experiment on the matched
exact filtering

We present here an example to show the flexibility of the proposed GCOMSM
as well as the performance of the matched exact filtering. We focus on the time-
independent case of the general GCOMSM, which means that the parameters de-
pend only on the switches (rn+1

n ). For simplification, we assume that (RN
1 ,Y

N
1 ) is

stationary reversible, which means that p
(
yn+1 |rn+1

n

)
= p

(
yn+1 |rn+1

)
, therefore

the “left” and “right” margins in (4) are equal. Under these assumptions the equa-
tion (4) and (6) can be written as

p
(
yn+1

∣∣rn+1
n ,yn

)
= frn+1

(
yn+1

)
crn+1

n

(
Frn (yn) , Frn+1

(
yn+1

))
(12)

xn+1 ∼ N
{
Arn+1

n

(
yn+1
n

)
xn + Brn+1

n

(
yn+1
n

)
,Vrn+1

n

}
. (13)

In place of the time dependence in original definition, the dependence on switches
are moved to subscript of all functions. For this example, we assume that RN

1 has
two component values Ω = {1, 2}. And for each j, k ∈ Ω, fj (yn) = frn=j (yn),
cj,k
(
Fj (yn) , Fk

(
yn+1

))
= crn=j,rn+1=k

(
Fj (yn) , Fk

(
yn+1

))
with Fj, Cj,k the associ-

ated CDF in (12). In (13), the abbreviation is taken in the same way: Aj,k (yn+1
n ) =

Arn=j,rn+1=k, (y
n+1
n ), so as Bj,k (yn+1

n ) and Vj,k.

The parameters of p
(
yn+1 |rn+1

n ,yn

)
which are set to be non-Gaussian as
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- Margins: f1 (yn) = Beta 1 {α1 = 0.9, β1 = 0.9, loc1 = −4, scale1 = 6},
f2 (yn) = Fisk 2 {β2 = 4, loc2 = −2.7, scale2 = 2.4}.

- Copulas: c1,1 {·, ·} = Arch14 3 {·, ·|α1,1 = 3}, c2,2 {·, ·} = FGM {·, ·|α2,2 = 0.5},
c1,2 {·, ·} = c2,1 {·, ·} = Clayton {·, ·|α1,2 = 4.7}.

The marginal and joint distribution are displayed in Figure 1a, 1b.

p (xn+1 |xn, r
n+1
n ,yn+1

n ) is set with Aj,k (yn+1
n ) = aj,kxn, simple non-linear func-

tion on yn, yn+1 that Bj,k (yn+1
n ) = bj,kynyn+1, and in which the parameters are

assigned as
- aj,k: a1,1 = 0.2, a1,2 = 0.4, a2,1 = 0.6, a2,2 = 0.8,
- bj,k: b1,1 = 0.7, b1,2 = 0.5, b2,1 = 0.6, b2,2 = 0.9,
- Vj,k: V1,1 = V2,2 = 1.0, V1,2 = V2,1 = 0.8.

(a) Margins (f1 (yn):Beta, f2 (yn):Fisk). (b) joint distribution of f1,2
(
yn,yn+1

)
.

(c) Histogram of xN
1 . (d) Histogram of yN

1 .

Figure 1: Distributions and histograms of simulated GCOMSM data.

1. α1 and β1 are the shape parameters, loc1 and scale1 are short for location and scale.
2. β2 represents the shape parameter, loc2 and scale2 for location and scale.
3. Short for Archimiedean copula, order: 14.
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2000 samples are simulated according to the above setting of GCOMSM. We see
from the histograms of the simulated data illustrated in Figure 1c, 1d that they are
hardly to be approximated by Gaussian mixtures with small component number.
Exact filtering for GCOMSM is applied on yN

1 to restore the hidden rN1 (decided
by maximum posterior mode criterion from p (rn |yn

1 )) and xN
1 . For comparison, we

conducted also the filtering based on Gaussian assumptions (both margins and cop-
ulas are assumed to be Gaussian) by using Maximum likelihood (ML) and Pseudo-
Likelihood Maximization (PLM) [9] for Gaussian parameter estimation of margins
and copulas applied on data. Restoration results are average of 100 independent
experiments, illustrated in Table 1. We can see that the exact filtering performs
well on restoring the hidden switches and states for GCOMSM, while the Gaussian
assumption is obviously inferior comparing to the exact filter.

Table 1: Restoration result.
Observation Exact filtering Filtering (Gaussian)

MSE Error Ratio MSE Error Ratio MSE

16.48 13.96% 1.18 35.91% 2.16

Their performance can also be told from the trajectories. Figure 2 illustrates an
trajectory example from one instance among the 100 experiment.

4 Conclusion

In this work, copula is introduced in the recent “conditionally Gaussian observed
Markov switching model” (CGOMSM), and fuse to a more general one called “gen-
eralized conditionally observed Markov switching model” (GCOMSM). Experiments
verify the capability of GCOMSM to work on data under flexible distributions. The
fast exact filtering for GCOMSM can be much less time consuming comparing to
using other non-Gaussian models which do not allow exact filtering and Monte-
Carlo methods are needed to be applied. The future work may contain the model
identification (identifying the margins, copulas [2, 6, 12], and also the conditional
regime functions [10]) of GCOMSM, and application of the model on non-Gaussian
non-linear data restoration. In addition, smoothing can also be a perspective of
interest.
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