6,433 research outputs found

    Distributed Strong Diameter Network Decomposition

    Full text link
    For a pair of positive parameters D,χD,\chi, a partition P{\cal P} of the vertex set VV of an nn-vertex graph G=(V,E)G = (V,E) into disjoint clusters of diameter at most DD each is called a (D,χ)(D,\chi) network decomposition, if the supergraph G(P){\cal G}({\cal P}), obtained by contracting each of the clusters of P{\cal P}, can be properly χ\chi-colored. The decomposition P{\cal P} is said to be strong (resp., weak) if each of the clusters has strong (resp., weak) diameter at most DD, i.e., if for every cluster CPC \in {\cal P} and every two vertices u,vCu,v \in C, the distance between them in the induced graph G(C)G(C) of CC (resp., in GG) is at most DD. Network decomposition is a powerful construct, very useful in distributed computing and beyond. It was shown by Awerbuch \etal \cite{AGLP89} and Panconesi and Srinivasan \cite{PS92}, that strong (2O(logn),2O(logn))(2^{O(\sqrt{\log n})},2^{O(\sqrt{\log n})}) network decompositions can be computed in 2O(logn)2^{O(\sqrt{\log n})} distributed time. Linial and Saks \cite{LS93} devised an ingenious randomized algorithm that constructs {\em weak} (O(logn),O(logn))(O(\log n),O(\log n)) network decompositions in O(log2n)O(\log^2 n) time. It was however open till now if {\em strong} network decompositions with both parameters 2o(logn)2^{o(\sqrt{\log n})} can be constructed in distributed 2o(logn)2^{o(\sqrt{\log n})} time. In this paper we answer this long-standing open question in the affirmative, and show that strong (O(logn),O(logn))(O(\log n),O(\log n)) network decompositions can be computed in O(log2n)O(\log^2 n) time. We also present a tradeoff between parameters of our network decomposition. Our work is inspired by and relies on the "shifted shortest path approach", due to Blelloch \etal \cite{BGKMPT11}, and Miller \etal \cite{MPX13}. These authors developed this approach for PRAM algorithms for padded partitions. We adapt their approach to network decompositions in the distributed model of computation

    On Derandomizing Local Distributed Algorithms

    Full text link
    The gap between the known randomized and deterministic local distributed algorithms underlies arguably the most fundamental and central open question in distributed graph algorithms. In this paper, we develop a generic and clean recipe for derandomizing LOCAL algorithms. We also exhibit how this simple recipe leads to significant improvements on a number of problem. Two main results are: - An improved distributed hypergraph maximal matching algorithm, improving on Fischer, Ghaffari, and Kuhn [FOCS'17], and giving improved algorithms for edge-coloring, maximum matching approximation, and low out-degree edge orientation. The first gives an improved algorithm for Open Problem 11.4 of the book of Barenboim and Elkin, and the last gives the first positive resolution of their Open Problem 11.10. - An improved distributed algorithm for the Lov\'{a}sz Local Lemma, which gets closer to a conjecture of Chang and Pettie [FOCS'17], and moreover leads to improved distributed algorithms for problems such as defective coloring and kk-SAT.Comment: 37 page

    On Strong Diameter Padded Decompositions

    Get PDF
    Given a weighted graph G=(V,E,w), a partition of V is Delta-bounded if the diameter of each cluster is bounded by Delta. A distribution over Delta-bounded partitions is a beta-padded decomposition if every ball of radius gamma Delta is contained in a single cluster with probability at least e^{-beta * gamma}. The weak diameter of a cluster C is measured w.r.t. distances in G, while the strong diameter is measured w.r.t. distances in the induced graph G[C]. The decomposition is weak/strong according to the diameter guarantee. Formerly, it was proven that K_r free graphs admit weak decompositions with padding parameter O(r), while for strong decompositions only O(r^2) padding parameter was known. Furthermore, for the case of a graph G, for which the induced shortest path metric d_G has doubling dimension ddim, a weak O(ddim)-padded decomposition was constructed, which is also known to be tight. For the case of strong diameter, nothing was known. We construct strong O(r)-padded decompositions for K_r free graphs, matching the state of the art for weak decompositions. Similarly, for graphs with doubling dimension ddim we construct a strong O(ddim)-padded decomposition, which is also tight. We use this decomposition to construct (O(ddim),O~(ddim))-sparse cover scheme for such graphs. Our new decompositions and cover have implications to approximating unique games, the construction of light and sparse spanners, and for path reporting distance oracles

    Distributed Connectivity Decomposition

    Full text link
    We present time-efficient distributed algorithms for decomposing graphs with large edge or vertex connectivity into multiple spanning or dominating trees, respectively. As their primary applications, these decompositions allow us to achieve information flow with size close to the connectivity by parallelizing it along the trees. More specifically, our distributed decomposition algorithms are as follows: (I) A decomposition of each undirected graph with vertex-connectivity kk into (fractionally) vertex-disjoint weighted dominating trees with total weight Ω(klogn)\Omega(\frac{k}{\log n}), in O~(D+n)\widetilde{O}(D+\sqrt{n}) rounds. (II) A decomposition of each undirected graph with edge-connectivity λ\lambda into (fractionally) edge-disjoint weighted spanning trees with total weight λ12(1ε)\lceil\frac{\lambda-1}{2}\rceil(1-\varepsilon), in O~(D+nλ)\widetilde{O}(D+\sqrt{n\lambda}) rounds. We also show round complexity lower bounds of Ω~(D+nk)\tilde{\Omega}(D+\sqrt{\frac{n}{k}}) and Ω~(D+nλ)\tilde{\Omega}(D+\sqrt{\frac{n}{\lambda}}) for the above two decompositions, using techniques of [Das Sarma et al., STOC'11]. Moreover, our vertex-connectivity decomposition extends to centralized algorithms and improves the time complexity of [Censor-Hillel et al., SODA'14] from O(n3)O(n^3) to near-optimal O~(m)\tilde{O}(m). As corollaries, we also get distributed oblivious routing broadcast with O(1)O(1)-competitive edge-congestion and O(logn)O(\log n)-competitive vertex-congestion. Furthermore, the vertex connectivity decomposition leads to near-time-optimal O(logn)O(\log n)-approximation of vertex connectivity: centralized O~(m)\widetilde{O}(m) and distributed O~(D+n)\tilde{O}(D+\sqrt{n}). The former moves toward the 1974 conjecture of Aho, Hopcroft, and Ullman postulating an O(m)O(m) centralized exact algorithm while the latter is the first distributed vertex connectivity approximation

    4.45 Pflops Astrophysical N-Body Simulation on K computer -- The Gravitational Trillion-Body Problem

    Full text link
    As an entry for the 2012 Gordon-Bell performance prize, we report performance results of astrophysical N-body simulations of one trillion particles performed on the full system of K computer. This is the first gravitational trillion-body simulation in the world. We describe the scientific motivation, the numerical algorithm, the parallelization strategy, and the performance analysis. Unlike many previous Gordon-Bell prize winners that used the tree algorithm for astrophysical N-body simulations, we used the hybrid TreePM method, for similar level of accuracy in which the short-range force is calculated by the tree algorithm, and the long-range force is solved by the particle-mesh algorithm. We developed a highly-tuned gravity kernel for short-range forces, and a novel communication algorithm for long-range forces. The average performance on 24576 and 82944 nodes of K computer are 1.53 and 4.45 Pflops, which correspond to 49% and 42% of the peak speed.Comment: 10 pages, 6 figures, Proceedings of Supercomputing 2012 (http://sc12.supercomputing.org/), Gordon Bell Prize Winner. Additional information is http://www.ccs.tsukuba.ac.jp/CCS/eng/gbp201

    Guest Editorial: Nonlinear Optimization of Communication Systems

    Get PDF
    Linear programming and other classical optimization techniques have found important applications in communication systems for many decades. Recently, there has been a surge in research activities that utilize the latest developments in nonlinear optimization to tackle a much wider scope of work in the analysis and design of communication systems. These activities involve every “layer” of the protocol stack and the principles of layered network architecture itself, and have made intellectual and practical impacts significantly beyond the established frameworks of optimization of communication systems in the early 1990s. These recent results are driven by new demands in the areas of communications and networking, as well as new tools emerging from optimization theory. Such tools include the powerful theories and highly efficient computational algorithms for nonlinear convex optimization, together with global solution methods and relaxation techniques for nonconvex optimization

    Space and Time Efficient Parallel Graph Decomposition, Clustering, and Diameter Approximation

    Full text link
    We develop a novel parallel decomposition strategy for unweighted, undirected graphs, based on growing disjoint connected clusters from batches of centers progressively selected from yet uncovered nodes. With respect to similar previous decompositions, our strategy exercises a tighter control on both the number of clusters and their maximum radius. We present two important applications of our parallel graph decomposition: (1) kk-center clustering approximation; and (2) diameter approximation. In both cases, we obtain algorithms which feature a polylogarithmic approximation factor and are amenable to a distributed implementation that is geared for massive (long-diameter) graphs. The total space needed for the computation is linear in the problem size, and the parallel depth is substantially sublinear in the diameter for graphs with low doubling dimension. To the best of our knowledge, ours are the first parallel approximations for these problems which achieve sub-diameter parallel time, for a relevant class of graphs, using only linear space. Besides the theoretical guarantees, our algorithms allow for a very simple implementation on clustered architectures: we report on extensive experiments which demonstrate their effectiveness and efficiency on large graphs as compared to alternative known approaches.Comment: 14 page
    corecore