4,180 research outputs found

    Algebraic tools for dealing with the atomic shell model. I. Wavefunctions and integrals for hydrogen--like ions

    Full text link
    Today, the 'hydrogen atom model' is known to play its role not only in teaching the basic elements of quantum mechanics but also for building up effective theories in atomic and molecular physics, quantum optics, plasma physics, or even in the design of semiconductor devices. Therefore, the analytical as well as numerical solutions of the hydrogen--like ions are frequently required both, for analyzing experimental data and for carrying out quite advanced theoretical studies. In order to support a fast and consistent access to these (Coulomb--field) solutions, here we present the Dirac program which has been developed originally for studying the properties and dynamical behaviour of the (hydrogen--like) ions. In the present version, a set of Maple procedures is provided for the Coulomb wave and Green's functions by applying the (wave) equations from both, the nonrelativistic and relativistic theory. Apart from the interactive access to these functions, moreover, a number of radial integrals are also implemented in the Dirac program which may help the user to construct transition amplitudes and cross sections as they occur frequently in the theory of ion--atom and ion--photon collisions.Comment: 23 pages, 1 figur

    Tensor Numerical Methods in Quantum Chemistry: from Hartree-Fock Energy to Excited States

    Get PDF
    We resume the recent successes of the grid-based tensor numerical methods and discuss their prospects in real-space electronic structure calculations. These methods, based on the low-rank representation of the multidimensional functions and integral operators, led to entirely grid-based tensor-structured 3D Hartree-Fock eigenvalue solver. It benefits from tensor calculation of the core Hamiltonian and two-electron integrals (TEI) in O(nlog⁡n)O(n\log n) complexity using the rank-structured approximation of basis functions, electron densities and convolution integral operators all represented on 3D n×n×nn\times n\times n Cartesian grids. The algorithm for calculating TEI tensor in a form of the Cholesky decomposition is based on multiple factorizations using algebraic 1D ``density fitting`` scheme. The basis functions are not restricted to separable Gaussians, since the analytical integration is substituted by high-precision tensor-structured numerical quadratures. The tensor approaches to post-Hartree-Fock calculations for the MP2 energy correction and for the Bethe-Salpeter excited states, based on using low-rank factorizations and the reduced basis method, were recently introduced. Another direction is related to the recent attempts to develop a tensor-based Hartree-Fock numerical scheme for finite lattice-structured systems, where one of the numerical challenges is the summation of electrostatic potentials of a large number of nuclei. The 3D grid-based tensor method for calculation of a potential sum on a L×L×LL\times L\times L lattice manifests the linear in LL computational work, O(L)O(L), instead of the usual O(L3log⁡L)O(L^3 \log L) scaling by the Ewald-type approaches

    An efficient implementation of Slater-Condon rules

    Full text link
    Slater-Condon rules are at the heart of any quantum chemistry method as they allow to simplify 3N3N-dimensional integrals as sums of 3- or 6-dimensional integrals. In this paper, we propose an efficient implementation of those rules in order to identify very rapidly which integrals are involved in a matrix element expressed in the determinant basis set. This implementation takes advantage of the bit manipulation instructions on x86 architectures that were introduced in 2008 with the SSE4.2 instruction set. Finding which spin-orbitals are involved in the calculation of a matrix element doesn't depend on the number of electrons of the system.Comment: 8 pages, 5 figure
    • 

    corecore