47,006 research outputs found

    Sequential compact code learning for unsupervised image hashing

    Get PDF
    Effective hashing for large-scale image databases is a popular research area, attracting much attention in computer vision and visual information retrieval. Several recent methods attempt to learn either graph embedding or semantic coding for fast and accurate applications. In this paper, a novel unsupervised framework, termed evolutionary compact embedding (ECE), is introduced to automatically learn the task-specific binary hash codes. It can be regarded as an optimization algorithm that combines the genetic programming (GP) and a boosting trick. In our architecture, each bit of ECE is iteratively computed using a weak binary classification function, which is generated through GP evolving by jointly minimizing its empirical risk with the AdaBoost strategy on a training set. We address this as greedy optimization by embedding high-dimensional data points into a similarity-preserved Hamming space with a low dimension. We systematically evaluate ECE on two data sets, SIFT 1M and GIST 1M, showing the effectiveness and the accuracy of our method for a large-scale similarity search

    Hashing for Similarity Search: A Survey

    Full text link
    Similarity search (nearest neighbor search) is a problem of pursuing the data items whose distances to a query item are the smallest from a large database. Various methods have been developed to address this problem, and recently a lot of efforts have been devoted to approximate search. In this paper, we present a survey on one of the main solutions, hashing, which has been widely studied since the pioneering work locality sensitive hashing. We divide the hashing algorithms two main categories: locality sensitive hashing, which designs hash functions without exploring the data distribution and learning to hash, which learns hash functions according the data distribution, and review them from various aspects, including hash function design and distance measure and search scheme in the hash coding space

    Embedding based on function approximation for large scale image search

    Full text link
    The objective of this paper is to design an embedding method that maps local features describing an image (e.g. SIFT) to a higher dimensional representation useful for the image retrieval problem. First, motivated by the relationship between the linear approximation of a nonlinear function in high dimensional space and the stateof-the-art feature representation used in image retrieval, i.e., VLAD, we propose a new approach for the approximation. The embedded vectors resulted by the function approximation process are then aggregated to form a single representation for image retrieval. Second, in order to make the proposed embedding method applicable to large scale problem, we further derive its fast version in which the embedded vectors can be efficiently computed, i.e., in the closed-form. We compare the proposed embedding methods with the state of the art in the context of image search under various settings: when the images are represented by medium length vectors, short vectors, or binary vectors. The experimental results show that the proposed embedding methods outperform existing the state of the art on the standard public image retrieval benchmarks.Comment: Accepted to TPAMI 2017. The implementation and precomputed features of the proposed F-FAemb are released at the following link: http://tinyurl.com/F-FAem
    • …
    corecore