1,584 research outputs found

    The ADMM-PINNs Algorithmic Framework for Nonsmooth PDE-Constrained Optimization: A Deep Learning Approach

    Full text link
    We study the combination of the alternating direction method of multipliers (ADMM) with physics-informed neural networks (PINNs) for a general class of nonsmooth partial differential equation (PDE)-constrained optimization problems, where additional regularization can be employed for constraints on the control or design variables. The resulting ADMM-PINNs algorithmic framework substantially enlarges the applicable range of PINNs to nonsmooth cases of PDE-constrained optimization problems. The application of the ADMM makes it possible to untie the PDE constraints and the nonsmooth regularization terms for iterations. Accordingly, at each iteration, one of the resulting subproblems is a smooth PDE-constrained optimization which can be efficiently solved by PINNs, and the other is a simple nonsmooth optimization problem which usually has a closed-form solution or can be efficiently solved by various standard optimization algorithms or pre-trained neural networks. The ADMM-PINNs algorithmic framework does not require to solve PDEs repeatedly, and it is mesh-free, easy to implement, and scalable to different PDE settings. We validate the efficiency of the ADMM-PINNs algorithmic framework by different prototype applications, including inverse potential problems, source identification in elliptic equations, control constrained optimal control of the Burgers equation, and sparse optimal control of parabolic equations

    Optimization Methods for Inverse Problems

    Full text link
    Optimization plays an important role in solving many inverse problems. Indeed, the task of inversion often either involves or is fully cast as a solution of an optimization problem. In this light, the mere non-linear, non-convex, and large-scale nature of many of these inversions gives rise to some very challenging optimization problems. The inverse problem community has long been developing various techniques for solving such optimization tasks. However, other, seemingly disjoint communities, such as that of machine learning, have developed, almost in parallel, interesting alternative methods which might have stayed under the radar of the inverse problem community. In this survey, we aim to change that. In doing so, we first discuss current state-of-the-art optimization methods widely used in inverse problems. We then survey recent related advances in addressing similar challenges in problems faced by the machine learning community, and discuss their potential advantages for solving inverse problems. By highlighting the similarities among the optimization challenges faced by the inverse problem and the machine learning communities, we hope that this survey can serve as a bridge in bringing together these two communities and encourage cross fertilization of ideas.Comment: 13 page
    corecore