7 research outputs found

    Robust Learning of Fixed-Structure Bayesian Networks

    Full text link
    We investigate the problem of learning Bayesian networks in a robust model where an ϵ\epsilon-fraction of the samples are adversarially corrupted. In this work, we study the fully observable discrete case where the structure of the network is given. Even in this basic setting, previous learning algorithms either run in exponential time or lose dimension-dependent factors in their error guarantees. We provide the first computationally efficient robust learning algorithm for this problem with dimension-independent error guarantees. Our algorithm has near-optimal sample complexity, runs in polynomial time, and achieves error that scales nearly-linearly with the fraction of adversarially corrupted samples. Finally, we show on both synthetic and semi-synthetic data that our algorithm performs well in practice

    Fast Algorithms for Segmented Regression

    No full text
    Abstract We study the fixed design segmented regression problem: Given noisy samples from a piecewise linear function f , we want to recover f up to a desired accuracy in mean-squared error. Previous rigorous approaches for this problem rely on dynamic programming (DP) and, while sample efficient, have running time quadratic in the sample size. As our main contribution, we provide new sample near-linear time algorithms for the problem that -while not being minimax optimal -achieve a significantly better sample-time tradeoff on large datasets compared to the DP approach. Our experimental evaluation shows that, compared with the DP approach, our algorithms provide a convergence rate that is only off by a factor of 2 to 4, while achieving speedups of three orders of magnitude
    corecore