3 research outputs found

    New Polynomial Cases of the Weighted Efficient Domination Problem

    Full text link
    Let G be a finite undirected graph. A vertex dominates itself and all its neighbors in G. A vertex set D is an efficient dominating set (e.d. for short) of G if every vertex of G is dominated by exactly one vertex of D. The Efficient Domination (ED) problem, which asks for the existence of an e.d. in G, is known to be NP-complete even for very restricted graph classes. In particular, the ED problem remains NP-complete for 2P3-free graphs and thus for P7-free graphs. We show that the weighted version of the problem (abbreviated WED) is solvable in polynomial time on various subclasses of 2P3-free and P7-free graphs, including (P2+P4)-free graphs, P5-free graphs and other classes. Furthermore, we show that a minimum weight e.d. consisting only of vertices of degree at most 2 (if one exists) can be found in polynomial time. This contrasts with our NP-completeness result for the ED problem on planar bipartite graphs with maximum degree 3

    Efficient domination and polarity

    Get PDF
    The thesis considers the following graph problems: Efficient (Edge) Domination seeks for an independent vertex (edge) subset D such that all other vertices (edges) have exactly one neighbor in D. Polarity asks for a vertex subset that induces a complete multipartite graph and that contains a vertex of every induced P_3. Monopolarity is the special case of Polarity where the wanted vertex subset has to be independent. These problems are NP-complete in general, but efficiently solvable on various graph classes. The thesis sharpens known NP-completeness results and presents new solvable cases
    corecore