1,938 research outputs found

    Neural activity classification with machine learning models trained on interspike interval series data

    Full text link
    The flow of information through the brain is reflected by the activity patterns of neural cells. Indeed, these firing patterns are widely used as input data to predictive models that relate stimuli and animal behavior to the activity of a population of neurons. However, relatively little attention was paid to single neuron spike trains as predictors of cell or network properties in the brain. In this work, we introduce an approach to neuronal spike train data mining which enables effective classification and clustering of neuron types and network activity states based on single-cell spiking patterns. This approach is centered around applying state-of-the-art time series classification/clustering methods to sequences of interspike intervals recorded from single neurons. We demonstrate good performance of these methods in tasks involving classification of neuron type (e.g. excitatory vs. inhibitory cells) and/or neural circuit activity state (e.g. awake vs. REM sleep vs. nonREM sleep states) on an open-access cortical spiking activity dataset

    QUANT: A Minimalist Interval Method for Time Series Classification

    Full text link
    We show that it is possible to achieve the same accuracy, on average, as the most accurate existing interval methods for time series classification on a standard set of benchmark datasets using a single type of feature (quantiles), fixed intervals, and an 'off the shelf' classifier. This distillation of interval-based approaches represents a fast and accurate method for time series classification, achieving state-of-the-art accuracy on the expanded set of 142 datasets in the UCR archive with a total compute time (training and inference) of less than 15 minutes using a single CPU core.Comment: 26 pages, 20 figure

    TEASER: Early and Accurate Time Series Classification

    Get PDF
    Early time series classification (eTSC) is the problem of classifying a time series after as few measurements as possible with the highest possible accuracy. The most critical issue of any eTSC method is to decide when enough data of a time series has been seen to take a decision: Waiting for more data points usually makes the classification problem easier but delays the time in which a classification is made; in contrast, earlier classification has to cope with less input data, often leading to inferior accuracy. The state-of-the-art eTSC methods compute a fixed optimal decision time assuming that every times series has the same defined start time (like turning on a machine). However, in many real-life applications measurements start at arbitrary times (like measuring heartbeats of a patient), implying that the best time for taking a decision varies heavily between time series. We present TEASER, a novel algorithm that models eTSC as a two two-tier classification problem: In the first tier, a classifier periodically assesses the incoming time series to compute class probabilities. However, these class probabilities are only used as output label if a second-tier classifier decides that the predicted label is reliable enough, which can happen after a different number of measurements. In an evaluation using 45 benchmark datasets, TEASER is two to three times earlier at predictions than its competitors while reaching the same or an even higher classification accuracy. We further show TEASER's superior performance using real-life use cases, namely energy monitoring, and gait detection

    Benchmarking Multivariate Time Series Classification Algorithms

    Full text link
    Time Series Classification (TSC) involved building predictive models for a discrete target variable from ordered, real valued, attributes. Over recent years, a new set of TSC algorithms have been developed which have made significant improvement over the previous state of the art. The main focus has been on univariate TSC, i.e. the problem where each case has a single series and a class label. In reality, it is more common to encounter multivariate TSC (MTSC) problems where multiple series are associated with a single label. Despite this, much less consideration has been given to MTSC than the univariate case. The UEA archive of 30 MTSC problems released in 2018 has made comparison of algorithms easier. We review recently proposed bespoke MTSC algorithms based on deep learning, shapelets and bag of words approaches. The simplest approach to MTSC is to ensemble univariate classifiers over the multivariate dimensions. We compare the bespoke algorithms to these dimension independent approaches on the 26 of the 30 MTSC archive problems where the data are all of equal length. We demonstrate that the independent ensemble of HIVE-COTE classifiers is the most accurate, but that, unlike with univariate classification, dynamic time warping is still competitive at MTSC.Comment: Data Min Knowl Disc (2020

    Back to Basics: A Sanity Check on Modern Time Series Classification Algorithms

    Full text link
    The state-of-the-art in time series classification has come a long way, from the 1NN-DTW algorithm to the ROCKET family of classifiers. However, in the current fast-paced development of new classifiers, taking a step back and performing simple baseline checks is essential. These checks are often overlooked, as researchers are focused on establishing new state-of-the-art results, developing scalable algorithms, and making models explainable. Nevertheless, there are many datasets that look like time series at first glance, but classic algorithms such as tabular methods with no time ordering may perform better on such problems. For example, for spectroscopy datasets, tabular methods tend to significantly outperform recent time series methods. In this study, we compare the performance of tabular models using classic machine learning approaches (e.g., Ridge, LDA, RandomForest) with the ROCKET family of classifiers (e.g., Rocket, MiniRocket, MultiRocket). Tabular models are simple and very efficient, while the ROCKET family of classifiers are more complex and have state-of-the-art accuracy and efficiency among recent time series classifiers. We find that tabular models outperform the ROCKET family of classifiers on approximately 19% of univariate and 28% of multivariate datasets in the UCR/UEA benchmark and achieve accuracy within 10 percentage points on about 50% of datasets. Our results suggest that it is important to consider simple tabular models as baselines when developing time series classifiers. These models are very fast, can be as effective as more complex methods and may be easier to understand and deploy
    • …
    corecore