5,444 research outputs found

    FATTENING CAPACITIES AND MEAT QUALITY OF JAPANESE QUAILS OF FARAON AND WHITE ENGLISH BREEDS

    Get PDF
    The aim of the study was to establish the fatting capacity and the meat quality of the combined (meat+eggs) White English breed and to compare with the same of the meat Faraon breed. Logically, the live weight of 31-day old male Faraon-birds was by 5,9 % higher and of the female ones – by 7,9 % compared to the birds of White English breed. Feed conversion ratio for the experimental period (3-31 days) for the White English quails was to 9,95% less effective, compared to the Faraon birds. The meat of Faraon quails contained more dry matter and protein compared to the meat of White English breed. Fat content in the quail bodies of White English breed was signifi cantly lower compared to Faraon breed /Р≤0,05/. Quail meat of White English breed was characterized by its better capacity for technological processing due to the lower loss of moisture – by 18,8 % for breast and 22,4 % for leg muscles /Р≤0,05/. The established results characterize the combined White English breed as suitable for producing both of eggs and meat from quails

    Generation of nonclassical states of light via photon blockade in optical nanocavities

    Get PDF
    The generation of nonclassical states of light via photon blockade with time-modulated input is analyzed. We show that improved single-photon statistics can be obtained by adequately choosing the parameters of the driving laser pulses. An alternative method, where the system is driven via a continuous-wave laser and the frequency of the dipole is controlled (e.g., electrically) at very fast time scales is presented

    Integrated quantum optical networks based on quantum dots and photonic crystals

    Get PDF
    Single solid-state optical emitters have quantum mechanical properties that make them suitable for applications in information processing and sensing. Most of these quantum technologies rely on the capability to integrate the emitters in reliable solid-state optical networks. In this paper, we present integrated devices based on GaAs photonic crystals and InAs self-assembled quantum dots. These quantum networks are well suited to future optoelectronic devices operating at ultralow power levels, single-photon logic devices and quantum information processing

    Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles

    Get PDF
    The angular response of thin diffractive optical elements is highly correlated. For example, the angles of incidence and diffraction of a grating are locked through the grating momentum determined by the grating period. Other diffractive devices, including conventional metasurfaces, have a similar angular behavior due to the fixed locations of the Fresnel zone boundaries and the weak angular sensitivity of the meta-atoms. To alter this fundamental property, we introduce angle-multiplexed metasurfaces, composed of reflective high-contrast dielectric U-shaped meta-atoms, whose response under illumination from different angles can be controlled independently. This enables flat optical devices that impose different and independent optical transformations when illuminated from different directions, a capability not previously available in diffractive optics

    Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures

    Get PDF
    We propose and experimentally demonstrate a planar array of optical bandpass filters composed of low loss dielectric metasurface layers sandwiched between two distributed Bragg reflectors (DBRs). The two DBRs form a Fabry-P\'erot resonator whose center wavelength is controlled by the design of the transmissive metasurface layer which functions as a phase shifting element. We demonstrate an array of bandpass filters with spatially varying center wavelengths covering a wide range of operation wavelengths of 250 nm around {\lambda} = 1550 nm ({\Delta}{\lambda}/{\lambda} = 16%). The center wavelengths of each filter are independently controlled only by changing the in-plane geometry of the sandwiched metasurfaces, and the experimentally measured quality factors are larger than 700. The demonstrated filter array can be directly integrated on top of photodetector arrays to realize on-chip high-resolution spectrometers with free-space coupling

    Single photon nonlinear optics in photonic crystals

    Get PDF
    We coherently probe a quantum dot that is strongly coupled to a photonic crystal nano-cavity by scattering of a resonant laser beam. The coupled system's response is highly nonlinear as the quantum dot saturates with nearly one photon per cavity lifetime. This system enables large amplitude and phase shifts of a signal beam via a control beam, both at single photon levels. We demonstrate photon-photon interactions with short pulses in a system that is promising for ultra-low power switches and two-qubit quantum gates

    Independent electrical tuning of separated quantum dots in coupled photonic crystal cavities

    Get PDF
    Systems of photonic crystal cavities coupled to quantum dots are a promising architecture for quantum networking and quantum simulators. The ability to independently tune the frequencies of laterally separated quantum dots is a crucial component of such a scheme. Here, we demonstrate independent tuning of laterally separated quantum dots in photonic crystal cavities coupled by in-plane waveguides by implanting lines of protons which serve to electrically isolate different sections of a diode structure.Comment: 3 pages, 3 figure

    Gallium phosphide photonic crystal nanocavities in the visible

    Get PDF
    Photonic crystal nanocavities at visible wavelengths are fabricated in a high refractive index (n>3.2) gallium phosphide membrane. The cavities are probed via a cross-polarized reflectivity measurement and show resonances at wavelengths as low as 645 nm at room temperature, with quality factors between 500 and 1700 for modes with volumes 0.7(λ/n)^3. These structures could be employed for submicron scale optoelectronic devices in the visible, and for coupling to emitters with resonances in the visible such as nitrogen vacancy centers, and biomolecules and organic molecules
    corecore