8 research outputs found

    Surface Gap Soliton Ground States for the Nonlinear Schr\"{o}dinger Equation

    Full text link
    We consider the nonlinear Schr\"{o}dinger equation (Δ+V(x))u=Γ(x)up1u(-\Delta +V(x))u = \Gamma(x) |u|^{p-1}u, xRnx\in \R^n with V(x)=V1(x)χ{x1>0}(x)+V2(x)χ{x1<0}(x)V(x) = V_1(x) \chi_{\{x_1>0\}}(x)+V_2(x) \chi_{\{x_1<0\}}(x) and Γ(x)=Γ1(x)χ{x1>0}(x)+Γ2(x)χ{x1<0}(x)\Gamma(x) = \Gamma_1(x) \chi_{\{x_1>0\}}(x)+\Gamma_2(x) \chi_{\{x_1<0\}}(x) and with V1,V2,Γ1,Γ2V_1, V_2, \Gamma_1, \Gamma_2 periodic in each coordinate direction. This problem describes the interface of two periodic media, e.g. photonic crystals. We study the existence of ground state H1H^1 solutions (surface gap soliton ground states) for 0<minσ(Δ+V)0<\min \sigma(-\Delta +V). Using a concentration compactness argument, we provide an abstract criterion for the existence based on ground state energies of each periodic problem (with VV1,ΓΓ1V\equiv V_1, \Gamma\equiv \Gamma_1 and VV2,ΓΓ2V\equiv V_2, \Gamma\equiv \Gamma_2) as well as a more practical criterion based on ground states themselves. Examples of interfaces satisfying these criteria are provided. In 1D it is shown that, surprisingly, the criteria can be reduced to conditions on the linear Bloch waves of the operators d2dx2+V1(x)-\tfrac{d^2}{dx^2} +V_1(x) and d2dx2+V2(x)-\tfrac{d^2}{dx^2} +V_2(x).Comment: definition of ground and bound states added, assumption (H2) weakened (sign changing nonlinearity is now allowed); 33 pages, 4 figure

    Bifurcation of Nonlinear Bloch Waves from the Spectrum in the Gross-Pitaevskii Equation

    Get PDF
    We rigorously analyze the bifurcation of stationary so called nonlinear Bloch waves (NLBs) from the spectrum in the Gross-Pitaevskii (GP) equation with a periodic potential, in arbitrary space dimensions. These are solutions which can be expressed as finite sums of quasi-periodic functions, and which in a formal asymptotic expansion are obtained from solutions of the so called algebraic coupled mode equations. Here we justify this expansion by proving the existence of NLBs and estimating the error of the formal asymptotics. The analysis is illustrated by numerical bifurcation diagrams, mostly in 2D. In addition, we illustrate some relations of NLBs to other classes of solutions of the GP equation, in particular to so called out--of--gap solitons and truncated NLBs, and present some numerical experiments concerning the stability of these solutions.Comment: 32 pages, 12 figures, changes: discussion of assumptions reorganized, a new section on stability of the studied solutions, 15 new references adde

    Solitons in nonlinear lattices

    Full text link
    This article offers a comprehensive survey of results obtained for solitons and complex nonlinear wave patterns supported by purely nonlinear lattices (NLs), which represent a spatially periodic modulation of the local strength and sign of the nonlinearity, and their combinations with linear lattices. A majority of the results obtained, thus far, in this field and reviewed in this article are theoretical. Nevertheless, relevant experimental settings are surveyed too, with emphasis on perspectives for implementation of the theoretical predictions in the experiment. Physical systems discussed in the review belong to the realms of nonlinear optics (including artificial optical media, such as photonic crystals, and plasmonics) and Bose-Einstein condensation (BEC). The solitons are considered in one, two, and three dimensions (1D, 2D, and 3D). Basic properties of the solitons presented in the review are their existence, stability, and mobility. Although the field is still far from completion, general conclusions can be drawn. In particular, a novel fundamental property of 1D solitons, which does not occur in the absence of NLs, is a finite threshold value of the soliton norm, necessary for their existence. In multidimensional settings, the stability of solitons supported by the spatial modulation of the nonlinearity is a truly challenging problem, for the theoretical and experimental studies alike. In both the 1D and 2D cases, the mechanism which creates solitons in NLs is principally different from its counterpart in linear lattices, as the solitons are created directly, rather than bifurcating from Bloch modes of linear lattices.Comment: 169 pages, 35 figures, a comprehensive survey of results on solitons in purely nonlinear and mixed lattices, to appear in Reviews of Modern Physic

    The Discontinuous Galerkin Method for Maxwell\u27s Equations: Application to Bodies of Revolution and Kerr-Nonlinearities

    Get PDF
    Die unstetige Galerkinmethode (UGM) wird auf die rotationssymmetrischen und Kerr- Maxwell-Gleichungen angewandt. Essentiell ist hierbei der numerische Fluss. Für die rotationssymmetrischen Maxwell-Gleichungen wird ein exakter Fluss vorgestellt und unter Ausnutzung der Symmetrie der Aufwand reduziert. Für die Kerr-Maxwell-Gleichungen führt der exakte numerische Fluss auf eine ineffiziente UGM, weswegen approximative Flüsse miteinander verglichen werden. Wir erhalten optimale Konvergenz
    corecore