2,904 research outputs found

    Data mining based cyber-attack detection

    Get PDF

    Adversarial Sample Generation using the Euclidean Jacobian-based Saliency Map Attack (EJSMA) and Classification for IEEE 802.11 using the Deep Deterministic Policy Gradient (DDPG)

    Get PDF
    One of today's most promising developments is wireless networking, as it enables people across the globe to stay connected. As the wireless networks' transmission medium is open, there are potential issues in safeguarding the privacy of the information. Though several security protocols exist in the literature for the preservation of information, most cases fail with a simple spoof attack. So, intrusion detection systems are vital in wireless networks as they help in the identification of harmful traffic. One of the challenges that exist in wireless intrusion detection systems (WIDS) is finding a balance between accuracy and false alarm rate. The purpose of this study is to provide a practical classification scheme for newer forms of attack. The AWID dataset is used in the experiment, which proposes a feature selection strategy using a combination of Elastic Net and recursive feature elimination. The best feature subset is obtained with 22 features, and a deep deterministic policy gradient learning algorithm is then used to classify attacks based on those features. Samples are generated using the Euclidean Jacobian-based Saliency Map Attack (EJSMA) to evaluate classification outcomes using adversarial samples. The meta-analysis reveals improved results in terms of feature production (22 features), classification accuracy (98.75% for testing samples and 85.24% for adversarial samples), and false alarm rates (0.35%).&nbsp

    Strengthening intrusion detection system for adversarial attacks:Improved handling of imbalance classification problem

    Get PDF
    Most defence mechanisms such as a network-based intrusion detection system (NIDS) are often sub-optimal for the detection of an unseen malicious pattern. In response, a number of studies attempt to empower a machine-learning-based NIDS to improve the ability to recognize adversarial attacks. Along this line of research, the present work focuses on non-payload connections at the TCP stack level, which is generalized and applicable to different network applications. As a compliment to the recently published investigation that searches for the most informative feature space for classifying obfuscated connections, the problem of class imbalance is examined herein. In particular, a multiple-clustering-based undersampling framework is proposed to determine the set of cluster centroids that best represent the majority class, whose size is reduced to be on par with that of the minority. Initially, a pool of centroids is created using the concept of ensemble clustering that aims to obtain a collection of accurate and diverse clusterings. From that, the final set of representatives is selected from this pool. Three different objective functions are formed for this optimization driven process, thus leading to three variants of FF-Majority, FF-Minority and FF-Overall. Based on the thorough evaluation of a published dataset, four classification models and different settings, these new methods often exhibit better predictive performance than its baseline, the single-clustering undersampling counterpart and state-of-the-art techniques. Parameter analysis and implication for analyzing an extreme case are also provided as a guideline for future applications
    • …
    corecore