88,393 research outputs found

    Fall prediction using behavioural modelling from sensor data in smart homes.

    Get PDF
    The number of methods for identifying potential fall risk is growing as the rate of elderly fallers continues to rise in the UK. Assessments for identifying risk of falling are usually performed in hospitals and other laboratory environments, however these are costly and cause inconvenience for the subject and health services. Replacing these intrusive testing methods with a passive in-home monitoring solution would provide a less time-consuming and cheaper alternative. As sensors become more readily available, machine learning models can be applied to the large amount of data they produce. This can support activity recognition, falls detection, prediction and risk determination. In this review, the growing complexity of sensor data, the required analysis, and the machine learning techniques used to determine risk of falling are explored. The current research on using passive monitoring in the home is discussed, while the viability of active monitoring using vision-based and wearable sensors is considered. Methods of fall detection, prediction and risk determination are then compared

    Performance Comparisson Human Activity Recognition using Simple Linear Method

    Get PDF
    Human activity recognition (HAR) with daily activities have become leading problems in human physical analysis. HAR with wide application in several areas of human physical analysis were increased along with several machine learning methods. This topic such as fall detection, medical rehabilitation or other smart appliance in physical analysis application has increase degree of life. Smart wearable devices with inertial sensor accelerometer and gyroscope were popular sensor for physical analysis. The previous research used this sensor with a various position in the human body part. Activities can classify in three class, static activity (SA), transition activity (TA), and dynamic activity (DA). Activity from complexity in activities can be separated in low and high complexity based on daily activity. Daily activity pattern has the same shape and patterns with gathering sensor. Dataset used in this paper have acquired from 30 volunteers. Seven basic machine learning algorithm Logistic Regression, Support Vector Machine, Decision Tree, Random Forest, Gradient Boosted and K-Nearest Neighbor. Confusion activities were solved with a simple linear method. The purposed method Logistic Regression achieves 98% accuracy same as SVM with linear kernel, with same result hyperparameter tuning for both methods have the same accuracy. LR and SVC its better used in SA and DA without TA in each recognizing

    CHARM: A Hierarchical Deep Learning Model for Classification of Complex Human Activities Using Motion Sensors

    Full text link
    In this paper, we report a hierarchical deep learning model for classification of complex human activities using motion sensors. In contrast to traditional Human Activity Recognition (HAR) models used for event-based activity recognition, such as step counting, fall detection, and gesture identification, this new deep learning model, which we refer to as CHARM (Complex Human Activity Recognition Model), is aimed for recognition of high-level human activities that are composed of multiple different low-level activities in a non-deterministic sequence, such as meal preparation, house chores, and daily routines. CHARM not only quantitatively outperforms state-of-the-art supervised learning approaches for high-level activity recognition in terms of average accuracy and F1 scores, but also automatically learns to recognize low-level activities, such as manipulation gestures and locomotion modes, without any explicit labels for such activities. This opens new avenues for Human-Machine Interaction (HMI) modalities using wearable sensors, where the user can choose to associate an automated task with a high-level activity, such as controlling home automation (e.g., robotic vacuum cleaners, lights, and thermostats) or presenting contextually relevant information at the right time (e.g., reminders, status updates, and weather/news reports). In addition, the ability to learn low-level user activities when trained using only high-level activity labels may pave the way to semi-supervised learning of HAR tasks that are inherently difficult to label.Comment: 8 pages, 5 figure

    A Human Activity Recognition System Based on Dynamic Clustering of Skeleton Data

    Get PDF
    Human activity recognition is an important area in computer vision, with its wide range of applications including ambient assisted living. In this paper, an activity recognition system based on skeleton data extracted from a depth camera is presented. The system makes use of machine learning techniques to classify the actions that are described with a set of a few basic postures. The training phase creates several models related to the number of clustered postures by means of a multiclass Support Vector Machine (SVM), trained with Sequential Minimal Optimization (SMO). The classification phase adopts the X-means algorithm to find the optimal number of clusters dynamically. The contribution of the paper is twofold. The first aim is to perform activity recognition employing features based on a small number of informative postures, extracted independently from each activity instance; secondly, it aims to assess the minimum number of frames needed for an adequate classification. The system is evaluated on two publicly available datasets, the Cornell Activity Dataset (CAD-60) and the Telecommunication Systems Team (TST) Fall detection dataset. The number of clusters needed to model each instance ranges from two to four elements. The proposed approach reaches excellent performances using only about 4 s of input data (~100 frames) and outperforms the state of the art when it uses approximately 500 frames on the CAD-60 dataset. The results are promising for the test in real context

    Detection of postural transitions using machine learning

    Get PDF
    The purpose of this project is to study the nature of human activity recognition and prepare a dataset from volunteers doing various activities which can be used for constructing the various parts of a machine learning model which is used to identify each volunteers posture transitions accurately. This report presents the problem definition, equipment used, previous work in this area of human activity recognition and the resolution of the problem along with results. Also this report sheds light on the process and the steps taken to undertake this endeavour of human activity recognition such as building of a dataset, pre-processing the data by applying filters and various windowing length techniques, splitting the data into training and testing data, performance of feature selection and feature extraction and finally selecting the model for training and testing which provides maximum accuracy and least misclassification rates. The tools used for this project includes a laptop equipped with MATLAB and EXCEL and MEDIA PLAYER CLASSIC respectively which have been used for data processing, model training and feature selection and Labelling respectively. The data has been collected using an Inertial Measurement Unit contains 3 tri-axial Accelerometers, 1 Gyroscope, 1 Magnetometer and 1 Pressure sensor. For this project only the Accelerometers, Gyroscope and the Pressure sensor is used. The sensor is made by the members of the lab named ‘The Technical Research Centre for Dependency Care and Autonomous Living (CETpD) at the UPC-ETSEIB campus. The results obtained have been satisfactory, and the objectives set have been fulfilled. There is room for possible improvements through expanding the scope of the project such as detection of chronic disorders or providing posture based statistics to the end user or even just achieving a higher rate of sensitivity of transitions of posture by using better features and increasing the dataset size by increasing the number of volunteers.Incomin
    • …
    corecore