32,865 research outputs found

    Recommender systems fairness evaluation via generalized cross entropy

    Full text link
    Fairness in recommender systems has been considered with respect to sensitive attributes of users (e.g., gender, race) or items (e.g., revenue in a multistakeholder setting). Regardless, the concept has been commonly interpreted as some form of equality – i.e., the degree to which the system is meeting the information needs of all its users in an equal sense. In this paper, we argue that fairness in recommender systems does not necessarily imply equality, but instead it should consider a distribution of resources based on merits and needs.We present a probabilistic framework based ongeneralized cross entropy to evaluate fairness of recommender systems under this perspective, wherewe showthat the proposed framework is flexible and explanatory by allowing to incorporate domain knowledge (through an ideal fair distribution) that can help to understand which item or user aspects a recommendation algorithm is over- or under-representing. Results on two real-world datasets show the merits of the proposed evaluation framework both in terms of user and item fairnessThis work was supported in part by the Center for Intelligent Information Retrieval and in part by project TIN2016-80630-P (MINECO

    Controlling Fairness and Bias in Dynamic Learning-to-Rank

    Full text link
    Rankings are the primary interface through which many online platforms match users to items (e.g. news, products, music, video). In these two-sided markets, not only the users draw utility from the rankings, but the rankings also determine the utility (e.g. exposure, revenue) for the item providers (e.g. publishers, sellers, artists, studios). It has already been noted that myopically optimizing utility to the users, as done by virtually all learning-to-rank algorithms, can be unfair to the item providers. We, therefore, present a learning-to-rank approach for explicitly enforcing merit-based fairness guarantees to groups of items (e.g. articles by the same publisher, tracks by the same artist). In particular, we propose a learning algorithm that ensures notions of amortized group fairness, while simultaneously learning the ranking function from implicit feedback data. The algorithm takes the form of a controller that integrates unbiased estimators for both fairness and utility, dynamically adapting both as more data becomes available. In addition to its rigorous theoretical foundation and convergence guarantees, we find empirically that the algorithm is highly practical and robust.Comment: First two authors contributed equally. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval 202

    Fairness in Information Access Systems

    Get PDF
    Recommendation, information retrieval, and other information access systems pose unique challenges for investigating and applying the fairness and non-discrimination concepts that have been developed for studying other machine learning systems. While fair information access shares many commonalities with fair classification, the multistakeholder nature of information access applications, the rank-based problem setting, the centrality of personalization in many cases, and the role of user response complicate the problem of identifying precisely what types and operationalizations of fairness may be relevant, let alone measuring or promoting them. In this monograph, we present a taxonomy of the various dimensions of fair information access and survey the literature to date on this new and rapidly-growing topic. We preface this with brief introductions to information access and algorithmic fairness, to facilitate use of this work by scholars with experience in one (or neither) of these fields who wish to learn about their intersection. We conclude with several open problems in fair information access, along with some suggestions for how to approach research in this space

    Fairness in Image Search: A Study of Occupational Stereotyping in Image Retrieval and its Debiasing

    Full text link
    Multi-modal search engines have experienced significant growth and widespread use in recent years, making them the second most common internet use. While search engine systems offer a range of services, the image search field has recently become a focal point in the information retrieval community, as the adage goes, "a picture is worth a thousand words". Although popular search engines like Google excel at image search accuracy and agility, there is an ongoing debate over whether their search results can be biased in terms of gender, language, demographics, socio-cultural aspects, and stereotypes. This potential for bias can have a significant impact on individuals' perceptions and influence their perspectives. In this paper, we present our study on bias and fairness in web search, with a focus on keyword-based image search. We first discuss several kinds of biases that exist in search systems and why it is important to mitigate them. We narrow down our study to assessing and mitigating occupational stereotypes in image search, which is a prevalent fairness issue in image retrieval. For the assessment of stereotypes, we take gender as an indicator. We explore various open-source and proprietary APIs for gender identification from images. With these, we examine the extent of gender bias in top-tanked image search results obtained for several occupational keywords. To mitigate the bias, we then propose a fairness-aware re-ranking algorithm that optimizes (a) relevance of the search result with the keyword and (b) fairness w.r.t genders identified. We experiment on 100 top-ranked images obtained for 10 occupational keywords and consider random re-ranking and re-ranking based on relevance as baselines. Our experimental results show that the fairness-aware re-ranking algorithm produces rankings with better fairness scores and competitive relevance scores than the baselines.Comment: 20 Pages, Work uses Proprietary Search Systems from the year 202

    Fairness of Exposure in Rankings

    Full text link
    Rankings are ubiquitous in the online world today. As we have transitioned from finding books in libraries to ranking products, jobs, job applicants, opinions and potential romantic partners, there is a substantial precedent that ranking systems have a responsibility not only to their users but also to the items being ranked. To address these often conflicting responsibilities, we propose a conceptual and computational framework that allows the formulation of fairness constraints on rankings in terms of exposure allocation. As part of this framework, we develop efficient algorithms for finding rankings that maximize the utility for the user while provably satisfying a specifiable notion of fairness. Since fairness goals can be application specific, we show how a broad range of fairness constraints can be implemented using our framework, including forms of demographic parity, disparate treatment, and disparate impact constraints. We illustrate the effect of these constraints by providing empirical results on two ranking problems.Comment: In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, UK, 201

    How FAIR can you get? Image Retrieval as a Use Case to calculate FAIR Metrics

    Full text link
    A large number of services for research data management strive to adhere to the FAIR guiding principles for scientific data management and stewardship. To evaluate these services and to indicate possible improvements, use-case-centric metrics are needed as an addendum to existing metric frameworks. The retrieval of spatially and temporally annotated images can exemplify such a use case. The prototypical implementation indicates that currently no research data repository achieves the full score. Suggestions on how to increase the score include automatic annotation based on the metadata inside the image file and support for content negotiation to retrieve the images. These and other insights can lead to an improvement of data integration workflows, resulting in a better and more FAIR approach to manage research data.Comment: This is a preprint for a paper accepted for the 2018 IEEE conferenc
    • …
    corecore