308 research outputs found

    Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations

    Full text link
    The key idea behind the unsupervised learning of disentangled representations is that real-world data is generated by a few explanatory factors of variation which can be recovered by unsupervised learning algorithms. In this paper, we provide a sober look at recent progress in the field and challenge some common assumptions. We first theoretically show that the unsupervised learning of disentangled representations is fundamentally impossible without inductive biases on both the models and the data. Then, we train more than 12000 models covering most prominent methods and evaluation metrics in a reproducible large-scale experimental study on seven different data sets. We observe that while the different methods successfully enforce properties ``encouraged'' by the corresponding losses, well-disentangled models seemingly cannot be identified without supervision. Furthermore, increased disentanglement does not seem to lead to a decreased sample complexity of learning for downstream tasks. Our results suggest that future work on disentanglement learning should be explicit about the role of inductive biases and (implicit) supervision, investigate concrete benefits of enforcing disentanglement of the learned representations, and consider a reproducible experimental setup covering several data sets

    Improving Fairness of Graph Neural Networks: A Graph Counterfactual Perspective

    Full text link
    Graph neural networks have shown great ability in representation (GNNs) learning on graphs, facilitating various tasks. Despite their great performance in modeling graphs, recent works show that GNNs tend to inherit and amplify the bias from training data, causing concerns of the adoption of GNNs in high-stake scenarios. Hence, many efforts have been taken for fairness-aware GNNs. However, most existing fair GNNs learn fair node representations by adopting statistical fairness notions, which may fail to alleviate bias in the presence of statistical anomalies. Motivated by causal theory, there are several attempts utilizing graph counterfactual fairness to mitigate root causes of unfairness. However, these methods suffer from non-realistic counterfactuals obtained by perturbation or generation. In this paper, we take a causal view on fair graph learning problem. Guided by the casual analysis, we propose a novel framework CAF, which can select counterfactuals from training data to avoid non-realistic counterfactuals and adopt selected counterfactuals to learn fair node representations for node classification task. Extensive experiments on synthetic and real-world datasets show the effectiveness of CAF

    Evaluating Disentanglement in Generative Models Without Knowledge of Latent Factors

    Full text link
    Probabilistic generative models provide a flexible and systematic framework for learning the underlying geometry of data. However, model selection in this setting is challenging, particularly when selecting for ill-defined qualities such as disentanglement or interpretability. In this work, we address this gap by introducing a method for ranking generative models based on the training dynamics exhibited during learning. Inspired by recent theoretical characterizations of disentanglement, our method does not require supervision of the underlying latent factors. We evaluate our approach by demonstrating the need for disentanglement metrics which do not require labels\textemdash the underlying generative factors. We additionally demonstrate that our approach correlates with baseline supervised methods for evaluating disentanglement. Finally, we show that our method can be used as an unsupervised indicator for downstream performance on reinforcement learning and fairness-classification problems

    Rectifying Unfairness in Recommendation Feedback Loop

    Get PDF
    The issue of fairness in recommendation systems has recently become a matter of growing concern for both the academic and industrial sectors due to the potential for bias in machine learning models. One such bias is that of feedback loops, where the collection of data from an unfair online system hinders the accurate evaluation of the relevance scores between users and items. Given that recommendation systems often recommend popular content and vendors, the underlying relevance scores between users and items may not be accurately represented in the training data. Hence, this creates a feedback loop in which the user is not longer recommended based on their true relevance score but instead based on biased training data. To address this problem of feedback loops, we propose a two-stage representation learning framework, B-FAIR, aimed at rectifying the unfairness caused by biased historical data in recommendation systems. The framework disentangles the context data into sensitive and non-sensitive components using a variational autoencoder and then applies a novel Balanced Fairness Objective (BFO) to remove bias in the observational data when training a recommendation model. The efficacy of B-FAIR is demonstrated through experiments on both synthetic and real-world benchmarks, showing improved performance over state-of-the-art algorithms

    A Novel Information-Theoretic Objective to Disentangle Representations for Fair Classification

    Full text link
    One of the pursued objectives of deep learning is to provide tools that learn abstract representations of reality from the observation of multiple contextual situations. More precisely, one wishes to extract disentangled representations which are (i) low dimensional and (ii) whose components are independent and correspond to concepts capturing the essence of the objects under consideration (Locatello et al., 2019b). One step towards this ambitious project consists in learning disentangled representations with respect to a predefined (sensitive) attribute, e.g., the gender or age of the writer. Perhaps one of the main application for such disentangled representations is fair classification. Existing methods extract the last layer of a neural network trained with a loss that is composed of a cross-entropy objective and a disentanglement regularizer. In this work, we adopt an information-theoretic view of this problem which motivates a novel family of regularizers that minimizes the mutual information between the latent representation and the sensitive attribute conditional to the target. The resulting set of losses, called CLINIC, is parameter free and thus, it is easier and faster to train. CLINIC losses are studied through extensive numerical experiments by training over 2k neural networks. We demonstrate that our methods offer a better disentanglement/accuracy trade-off than previous techniques, and generalize better than training with cross-entropy loss solely provided that the disentanglement task is not too constraining.Comment: Findings AACL 202

    On Fairness of Medical Image Classification with Multiple Sensitive Attributes via Learning Orthogonal Representations

    Full text link
    Mitigating the discrimination of machine learning models has gained increasing attention in medical image analysis. However, rare works focus on fair treatments for patients with multiple sensitive demographic ones, which is a crucial yet challenging problem for real-world clinical applications. In this paper, we propose a novel method for fair representation learning with respect to multi-sensitive attributes. We pursue the independence between target and multi-sensitive representations by achieving orthogonality in the representation space. Concretely, we enforce the column space orthogonality by keeping target information on the complement of a low-rank sensitive space. Furthermore, in the row space, we encourage feature dimensions between target and sensitive representations to be orthogonal. The effectiveness of the proposed method is demonstrated with extensive experiments on the CheXpert dataset. To our best knowledge, this is the first work to mitigate unfairness with respect to multiple sensitive attributes in the field of medical imaging
    • …
    corecore