76,487 research outputs found

    Deep-Reinforcement Learning Multiple Access for Heterogeneous Wireless Networks

    Full text link
    This paper investigates the use of deep reinforcement learning (DRL) in a MAC protocol for heterogeneous wireless networking referred to as Deep-reinforcement Learning Multiple Access (DLMA). The thrust of this work is partially inspired by the vision of DARPA SC2, a 3-year competition whereby competitors are to come up with a clean-slate design that "best share spectrum with any network(s), in any environment, without prior knowledge, leveraging on machine-learning technique". Specifically, this paper considers the problem of sharing time slots among a multiple of time-slotted networks that adopt different MAC protocols. One of the MAC protocols is DLMA. The other two are TDMA and ALOHA. The nodes operating DLMA do not know that the other two MAC protocols are TDMA and ALOHA. Yet, by a series of observations of the environment, its own actions, and the resulting rewards, a DLMA node can learn an optimal MAC strategy to coexist harmoniously with the TDMA and ALOHA nodes according to a specified objective (e.g., the objective could be the sum throughput of all networks, or a general alpha-fairness objective)

    Multi-agent quality of experience control

    Get PDF
    In the framework of the Future Internet, the aim of the Quality of Experience (QoE) Control functionalities is to track the personalized desired QoE level of the applications. The paper proposes to perform such a task by dynamically selecting the most appropriate Classes of Service (among the ones supported by the network), this selection being driven by a novel heuristic Multi-Agent Reinforcement Learning (MARL) algorithm. The paper shows that such an approach offers the opportunity to cope with some practical implementation problems: in particular, it allows to face the so-called “curse of dimensionality” of MARL algorithms, thus achieving satisfactory performance results even in the presence of several hundreds of Agents
    corecore